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Abstract—Various acquisition devices impose sampling blocks
of measurements. A typical example is parallel magnetic reso-
nance imaging (MRI) where several radio-frequency coils simul-
taneously acquire a set of Fourier modulated coefficients. We
study a new random sampling approach that consists in selecting
a set of blocks that are predefined by the application of interest.
We provide theoretical results on the number of blocks that are
required for exact sparse signal reconstruction. We finish by
illustrating these results on various examples, and discuss their
connection to the literature on CS.

Key-words : compressed sensing, blocks of measurements,
sampling continuous trajectory, exact recovery, `1 minimiza-
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I. INTRODUCTION

In many applications, the sampling strategy imposes to ac-
quire data in the form of blocks of measurements (see Fig. 1(b)
for block-structured sampling), instead of isolated measure-
ments (see Fig. 1(a)). For instance, in medical echography,
images are sampled along lines in the space domain, while,
in magnetic resonance imaging (MRI), acquiring data along
radial lines or spiral trajectories is a popular sampling strategy.
In compressed sensing (CS), various theoretical conditions
have been proposed to guarantee the exact reconstruction of a
sparse vector from a small number of isolated measurements
that are randomly drawn, see [1], [2], [3], and [4] for a detailed
review of the most recent results on this topic.

In a noise-free setting, the focus of the present paper is
on studying the problem of exact recovery of a sparse signal
in the case where the sampling strategy consists in randomly
choosing blocks of measurements. Each block corresponds to
a set of rows of an orthogonal sensing matrix. Our approach
is more flexible than the angle chosen in [5], while we assert
theoretical guarantees on the exact reconstruction of sparse
signals from blocks of measurements. Moreover, we assume
that physical acquisition devices impose block-structured mea-
surements, whereas in [6], or in [7] the authors consider a
block-sparse signal.
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(a) (b)

Fig. 1. An example of two sampling schemes in the 2D Fourier domain
with an undersampling factor R = 4 (a): Isolated points and radial
distribution. (b): Corresponding acquisition in the case of block measurements
that consist of lines in the 2D Fourier domain.

In this paper, we deal with the case where the blocks
are predefined. We give some conditions on the choice of
the drawing probability of the blocks and on the number of
measurements that are sufficient to obtain an exact recovery
by `1 minimization. We finish by illustrating these results
on various examples, and we discuss their connection to the
literature on CS.

II. PROBLEM SETTING

A. Notation
We consider an orthogonal matrixA ∈ Cn×n which denotes

the full sensing matrix. Matrix A is given a block structure, as

follows: A =

B1

...
BM

, where the blocks (Bj)1≤j≤M are non-

overlapping and such that Bj ∈ Cnj×n with
∑M
j=1 nj = n.

We set ‖A‖∞ = max
1≤i,j≤n

|Aij |.

Let (πj)1≤j≤M be positive weights with
∑M
j=1 πj = 1,

and let Π be a discrete probability distribution on the set of
integers {1, . . . ,M}, associated to these weights. Throughout
(Jk)1≤k≤m denotes a sequence of i.i.d. discrete random vari-
ables taking their value in {1, . . . ,M} with distribution Π.

Let S ⊂ {1, . . . , n} be a set of cardinality s. For a matrix
M ∈ Cm×n, we define

MS = (Mij)1≤i≤m,j∈S .
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B. The sampling strategy

In this paper, we consider the following sampling strategy.
We randomly select m blocks among (Bj)1≤j≤M , according
to the discrete probability distribution Π, which leads to
consider the sequence of i.i.d. random blocks (Xk)1≤k≤m
defined by

Xk =
1
√
πJk

BJk , k = 1 . . .m (1)

We consider the following random sampling matrix

Ãm =
1√
m

X1

...
Xm

 . (2)

It satisfies E
[
Ãm

∗
Ãm

]
= Idn by construction.

C. Minimization problem

Let y = Ãmx denote a set of q =
∑m
k=1 nJk linear

measurements of a signal x. To reconstruct x, the following
standard `1-minimization problem is solved:

min
z ∈ Cn

‖z‖1 subject to Ãmz = y. (3)

III. A NON-UNIFORM RECOVERY RESULT

Let us first introduce a new quantity of interest that will be
shown to be of primary importance to obtain exact recovery.

Definition III.1

For S ⊂ {1, .., n} we denote by ρSk for 1 ≤ k ≤ M any set
of positive reals that satisfies

ρSk ≥
∥∥∥(BS

k

)∗
BS
k

∥∥∥
2

where ‖C‖2 is the spectral norm of a matrix C.

The following theorem is the main result of the paper. It
gives a set of sufficient conditions for exact recovery of x
with large probability.

Theorem III.2
Let S ⊂ {1 . . . n}, be a set of cardinality ] {S} = s and

let ε = (ε`)`∈S ∈ Cs be a sequence of independent random
variables that are uniformly distributed on {−1; 1} (or on the
torus {z ∈ C , |z| = 1}).
Let x be a sparse vector with support S and sgn(xS) = ε.
Let Ãm be the sampling matrix built as above (see (2)).

Assume that
m ≥ Cs ln2

(
23/4n

ε

)
max

1≤k≤M

‖B∗kBk‖∞
πk

m ≥ C ln

(
23/4s

ε

)
max

1≤k≤M

ρSk
πk

(4)

(5)

with C = 256κ2, C ′ = 32κ2 and κ2 =
(√

17+1
4

)2
.

Then with probability at least 1 − ε the vector x is the
unique solution to the `1-minimization problem (3).

The proof of Theorem III.2 is too long to be written here.
It will appear in a forthcoming preprint. The approach is
inspired by the results in [4]. To derive Theorem III.2, we
had to extend probabilistic tools such as symmetrization and
Rudelson’s lemma [4] from the vectorial case to the matricial
one.

Remark : We can notice that the bounding above of∥∥∥(BS
k

)∗
BS
k

∥∥∥
2

by ρSk should not be too coarse, at the risk
of making the required number of measurements too large.

IV. DISCUSSION AND EXAMPLES

Conditions (4) and (5) may lead to a different optimal
drawing probabilty Π∗, in the sense that they can be used
to minimize a lower bound on the number m of block
measurements. Indeed
• if the right-hand side (rhs) of Inequality (4) is greater than

the rhs of Inequality (5), an optimal drawing probability
Π∗ is defined as follows: ∀k ∈ {1, . . . ,M}

π∗k =
‖B∗kBk‖∞∑M
`=1 ‖B∗`B`‖∞

.

• On the contrary, if the rhs of Inequality (5) prevails, then
an optimal drawing probability Π∗ turns to be: ∀k ∈
{1, . . . ,M}

π∗k =
ρSk∑M
`=1 ρ

S
`

.

Let us illustrate Theorem III.2 on practical examples.

A. One row blocks - the case of isolated measurements

First, let us show that our result matches the standard setting
where blocks are made of only one row. This is the case
considered e.g. by [2], [4]. Thus M = n,

A =

B1

...
BM

 =

a
∗
1
...
a∗n


where a1, . . . ,an are vectors of Cn, and ∀k ∈ {1, · · · ,M},
Bk = a∗k. We can set

ρSk = s‖ak‖2∞
with ]S = s. Then, the required number of measurements
will be minimized for the following drawing probability: ∀k ∈
{1, . . . ,M}

π∗k =
‖ak‖2∞∑n
`=1 ‖a`‖2∞

.

According to Theorem III.2 the number of isolated mea-
surements sufficient to obtain perfect reconstruction with high
probability is

m ≥ Cs ln2

(
23/43n

ε

) n∑
`=1

‖a`‖2∞. (6)

This condition is consistent with [4] for the non-uniform
recovery, up to a constant. This additional factor is not too
serious, since Theorem III.2 should be mainly considered as a
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guide to construct sampling patterns and not as a requirement
for perfect recovery. Surprisingly, a better drawing probability
distribution reducing the required number of measurements is
not the uniform one, as commonly used in [8], [4], but the
one depending on the `∞-norm of the considered row.

B. Block diagonal case

Let us assume that A is orthogonal, and A can be written
as

A =

B1

...
BM

 =


D1 0 0 . . . 0
0 D2 0 . . . 0

0 0
. . . 0 0

0 0 0 . . . DM

 .

Then ‖B∗kBk‖∞ = 1 and ρSk can be taken equal to 1
for all k ∈ {1, . . . ,M}, since Dk is orthogonal. Thus,
the block diagonal case corresponds to a uniform bound for
ρSk . Therefore, both Inequalities (4) and (5) entail a uniform
drawing probability as an optimal choice. Here, we see that no
matter how large the block is, an optimal drawing probability
Π∗ is the uniform one: ∀k ∈ {1, . . . ,M},

π∗k =
1

M
.

Moreover, with such a choice for Π∗, and by Theorem III.2
the number of block measurements sufficient to obtain perfect
reconstruction with high probability is

m ≥ Cs ln2

(
23/43n

ε

)
M. (7)

C. 2D Fourier matrix

We now turn to a more realistic setting where signals are
sparse in the Dirac basis and blocks of frequencies are probed
in the 2D Fourier domain. We consider blocks that consist
of discrete lines in the 2D Fourier space as in Fig 1(b).
This scenario is close to what can be encountered in MRI,
echography or some tomographic devices.

We assume that
√
n ∈ N and thatA is the 2D Fourier matrix

applicable on
√
n×
√
n images. For all p1 ∈ {1, . . . ,

√
n},

Bp1 =

[
1√
n

exp

(
2iπ

(
p1`1 + p2`2√

n

))]
(p1, p2)(`1, `2)

(8)

with 1 ≤ p2 ≤
√
n, 1 ≤ `1, `2 ≤

√
n. Let S ⊂ {1, . . . ,

√
n}×

{1, . . . ,
√
n} denote the support of x, with ]S = s. We

can write S = {(S1,1, S1,2) , (S2,1, S2,2) , . . . , (Ss,1, Ss,2)},
and we call S1 = {S1,1, S2,1, . . . , Ss,1} and S2 =
{S1,2, S2,2, . . . , Ss,2}. We can rewrite BS

p1 as

(
1

n1/4
e
−2iπp2 `2√

n

)
1≤p2≤

√
n

`2∈S2︸ ︷︷ ︸
MS√

n× s matrix


. . . 0 0

0 1
n1/4 e

−2iπp1 `1√
n 0

0 0
. . .


`1∈S1︸ ︷︷ ︸

Dp1
s× s diagonal matrix

so
∥∥∥(BS

p1

)∗
BS
p1

∥∥∥
2

=
∥∥D∗p1MS∗MSDp1

∥∥
2

≤
∥∥D∗p1∥∥2 ∥∥MS∗MS

∥∥
2
‖Dp1‖2

≤ 1

n1/2

∥∥MS∗MS
∥∥
2
.

In fact, we can see MS as 1D Fourier matrix M , from
which we select columns, eventually repeated, the indexes
of which are in S2. Now we have to evaluate the quantity∥∥MS∗MS

∥∥
2
. To do so, let us denote by (sj)j=1..

√
n the

number of repetitions of the j-th element of {1, . . . ,
√
n}

in S2. We have that
∑√n
j=1 sj = s, and 0 ≤ sj ≤

√
n,

∀j ∈ {1, . . . ,
√
n} .

Simple calculation leads to the following upper bound:∥∥MS∗MS
∥∥
2
≤

maxj=1,...,
√
n sj√

n
≤ min(s,

√
n)√

n
,

which leads to the choice

ρSk =
min(s,

√
n)

n
, k = 1, . . . ,M.

By definition of the 2D Fourier matrix of size n × n,
‖B∗kBk‖∞ = 1/

√
n, for all k ∈ {1, . . . ,

√
n}. Then, the

choice of the optimal drawing probability is given by ∀k ∈
{1, . . . ,

√
n}

π∗k =
1√
n
.

We deduce that the number of block measurements sufficient
to ensure exact recovery with high probability is

m ≥ Cs ln2

(
23/4n

ε

)
.

D. Wavelet Transform

Here, we consider that A is a dyadic wavelet transform
matrix, with n = 2α, α ∈ N. To each resolution level k ∈
{0, . . . , α} (k = 0, corresponding to the scaling function), we
associate the block Bk

Bk = (Ψk,j (`))j = 1...nk
1 ≤ ` ≤ n

, (9)

where Ψk,j is the discrete wavelet at scale k and location
parameter j, ` is the time variable and nk is the number of
wavelets (or scaling function) at scale k defined as follows

nk =

{
1 if k = 0
2k−1 if k ≥ 1.

Although this example is not realistic in practice, it provides
an interesting illustration of Theorem III.2. Let S be a set of
indexes of cardinality s. ThenBS

k can be defined by restricting
` to belong to S, i.e.

BS
k = (Ψk,j (`))j = 1...nk

` ∈ S
.

Proceedings of the 10th International Conference on Sampling Theory and Applications

507



As a consequence,
(
BS
k

)∗
BS
k is an s× s matrix, and

[(
BS
k

)∗
BS
k

]
(`,`′)∈S2

=

 nk∑
j=1

ψk,j (`)ψk,j (`′)


(`,`′)∈S2

.

(10)

By the results in [9], for wavelets with compact support,
such as Haar’s wavelets, we obtain that

∥∥∥(BS
k

)∗
BS
k

∥∥∥
2
≤∥∥∥(BS

k

)∗
BS
k

∥∥∥
∞
s ≤ nk

n s. Hence, one can take ρSk = nk
n s,

and the required number of measurements satisfies the bounds
m ≥ Cs ln2

(
23/4n

ε

)
1

n
max

1≤k≤K

nk
πk

m ≥ C ′s ln

(
23/4s

ε

)
1

n
max

1≤k≤K

nk
πk

(11)

(12)

that m is still proportional to s. If (12) is the strongest
condition on m, then an optimal choice for the drawing
probability Π∗ is

π∗k =
nk∑α
q=0 nq

k ∈ {1, . . . ,K} .

In this setting, the drawing probability is growing with the
resolution level k and it is proportional to the block size.

V. CONCLUSION

In this paper, we have introduced some theoretical tools for
the study of the exact recovery of sparse signals from blocks of
measurements selected randomly from an orthogonal sensing
matrix. We introduced the new quantities ρSk and ‖B∗kBk‖∞.
They play a central role to derive optimal sampling strategies
and to assess the number of block measurements that is neces-
sary to exactly reconstruct sparse signals by `1-minimization.
We plan to calibrate their for orthogonal matrices that appear
in applications such as the product of a discrete Fourier
transform with a wavelet transform. The extension of this work
to overlapping blocks, as presented in Figure 2, offers much
more versatility in the sampling patterns.

Fig. 2. An example of overlapping blocks of measurements in the 2D Fourier
domain.
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