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Abstract—We present a design scheme to generate tight and
semi-tight frames in the space of discrete-time periodic signals,
which are originated from four-channel perfect reconstruction
periodic filter banks. The filters are derived from interpolating
and quasi-interpolating polynomial splines. Each filter bank com-
prises one linear phase low-pass filter (in most cases interpolating)
and one high-pass filter, whose magnitude response mirrors that
of a low-pass filter. In addition, these filter banks comprise
two band-pass filters. In the semi-tight frames case, all the
filters have linear phase and (anti)symmetric impulse response,
while in the tight frame case, some of band-pass filters are
slightly asymmetric. We introduce the notion of local discrete
vanishing moments (LDVM). In the tight frame case, analysis
framelets coincide with their synthesis counterparts. However, in
the semi-tight frames, we have the option to swap LDVM between
synthesis and analysis framelets. The design scheme is generic,
and it enables to design framelets with any number of LDVM.
The computational complexity of the framelet transforms, which
consists of calculation of the forward and the inverse fast Fourier
transforms and simple arithmetic operations, practically does not
depend on the number of LDVM and on the size of the impulse
response of filters. The designed frames are used for restoration
of images, which are degraded by blurring, random noise and
missing pixels. The images were restored by the application of
the Split Bregman Iterations (SBI) method.

I. INTRODUCTION

Restoration of corrupted and/or damaged and/or noised
multidimensional signals is a major challenge that the sig-
nal/image processing community faces nowadays when rich
multimedia content is the most popular data that is being
transmitted over diverse networks types such as mobile. Qual-
ity degradation in multidimensional signals can come from
sampling, acquisition, transmission through noisy channels, to
name some. Restoration of multidimensional signals includes
denoising, deblurring, recovering missing or damaged samples
or fragments (inpainting in images), resolution enhancement
and super resolution. Recent developments in wavelet frames
(framelets) analysis provide innovative and powerful tools to
meet faithfully and robustly the above challenges. Framelets
produce redundant expansions whose valuable advantage is
their ability to restore missing and incomplete information and
to represent efficiently and compactly the data. In principle,
only part of the samples/pixels is needed for (near) perfect
object restoration. This approach, which is a variation of the
Compressive Sensing methodology, proved to be extremely
efficient for image restoration.

Practically, this approach is implemented via minimization
of a parameterized functional where the sparse representation
is reflected in the l1 norm of the transform coefficients. The
‖·‖1 minimization does not have an explicit solution and
can be resolved only by iterative methods. The so-called
split Bregman iteration (SBI) scheme, which was recently
introduced in [1], provided a fast and stable algorithm for
that. Variations of this scheme and its application to image
restoration using wavelet frames are described in [2], [3],
to mention a few. A variety of impressive results on image
restoration were reported in the last couple of years. A survey
is given in [4] while a recent development is described in [3].

Due to applications diversity, it is important to have a library
of wavelet frames in order to select a frame that fits best
a specific task. Forward and inverse transforms in iterative
algorithms are repeated many times, therefore, members in
this library must have fast and stable transforms implementa-
tion. Waveforms symmetry with the availability of vanishing
moments are also important in order to avoid distortions when
thresholding is used. To satisfy these requirements, most of
the framelet systems that were designed so far operate with
the compactly supported framelets and the transforms are
implemented by finite (and short) impulse response (FIR)
oversampled filter banks Thus, the number of framelet systems
available for applications is very limited. This number is even
smaller when the requirement is to have tight frames.

This limitation can be overcome by switching to a periodic
setting, which is the subject of this presentation. A variety of
four-channel PR filter banks, where the low-pass filters are
derived from interpolating and quasi-interpolating polynomial
splines, are designed. These filter banks generate a library
of 4- framelet periodic tight and the so-called semi-tight
frames with diverse properties. The transforms implementation
is reduced to application of the direct and the inverse fast
Fourier transforms (FFT) with simple arithmetic operations.
While implementation of SBI in non-periodic setting requires
multiple approximate solution of a system of equations by the
conjugate gradient method, the periodic implementation makes
it possible to avoid those procedures. This fact contributes
significantly to reduction of the implementation cost.

The designed framelets libraries were tested for image
restoration and demonstrated a high quality. Their diversity
enabled us to select a frame, which best fits each specific
application. In particular, in most of the experiments the semi-
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tight frames outperformed tight frames.

II. PERIODIC FILTER BANKS AND FRAME TRANSFORM

We call the N -periodic real-valued sequences x
def
=

{x[k]}, k ∈ Z, x[k + N ] = x[k], N = 2j , the discrete-time
periodic signals, which constitute an N -dimensional vector
space Π[N ]. We use the notation ω

def
= e2πi/N . The circular

convolution y[k] =
∑N−1
k=0 h[k − l] x[l] of the signal x with

a signal h ∈ Π[N ] is called p-filtering and the signal h is
called the p-filter. P-filtering results in multiplication of the
DFT: ŷ[n] = ĥ[n] x̂[n].

It is well known that the perfect reconstruction (PR) over-
sampled filter banks generate frames in the signal space [5].
We deal with four channel analysis H̃ def

=
{
h̃s
}

, and synthesis

H def
= {hs} , s = 0, ..., 3 with downsampling factor of 2, which

operate in the periodic signal space Π[N ]. Either of H̃, and
H filter banks comprises one low-pass p-filter h̃

0
and h0, one

high-pass h̃
1

and h1 and two band-pass h̃
s

and hs, s = 2, 3,
p-filters, respectively. The subsequent application of the time-
reversed analysis and synthesis filter banks to an input signal
x ∈ Π[N ] restores the signal:

ys[l] =
∑N−1
k=0 h̃

s[k − 2l] x[k], s = 0, . . . , 3,

x[l] =
∑S−1
s=0

∑N/2−1
k=0 hs[l − 2k] ys[k].

(1)

Denote by
{
ψ̃s[k] = h̃s[k]

}
and {ψs[k] = hs[k]} the im-

pulse responses of the analysis and synthesis p-filters, respec-
tively. Equations (1) provide the frame expansion of a signal
x ∈ Π[N ]:

x[l] =

3∑
s=0

N/2−1∑
k=0

ψs[l − 2k]
〈
x, ψ̃s[· − 2k]

〉
. (2)

The 2-sample shifts of the signals ψ̃s[k] and ψs[k] form
analysis and synthesis frames of the space Π[N ], respectively.
Together they constitute a bi-frame

{
F̃, F

}
. If the synthesis

framelets can be chosen to be equal to the analysis framelets
then the frame is tight.

III. DESIGN OF 4-CHANNEL PR FILTER BANKS

Denote by x0
def
= {x[2k]} ∈ Π[N/2] and x1

def
= {x[2k + 1]}

the even and odd polyphase components of a signal x ∈ Π[N ].
Then, the DFT of x is x̂[n] = x̂0[n]+ωn x̂1[n]. Application of
the 4-channel PR filter bank to a signal x ∈ Π[N ] can be ex-
pressed in a matrix form. Denote ~Y [n]

def
= (ˆ̃y0[n], ..., ˆ̃y3[n])T

and ~X[n]
def
= (x̂0[n], x̂1[n])T . Then, we have

~Y [n] = P̃[−n] · ~X[n], ~X[n] = P[n] · ~Y [n],

where the 4 × 2 analysis and the 2 × 4 synthesis polyphase
matrices are, respectively,

P̃[n]
def
=

(
ˆ̃
h00[n] ...

ˆ̃
h30[n]

ˆ̃
h01[n] ...

ˆ̃
h31[n]

)T
,

P[n]
def
=

(
ĥ00[n] ... ĥ30[n]

ĥ01[n] ... ĥ31[n]

)
.

The relations
P[n] · P̃[−n] = I2, (3)

is the condition for the pair
{

H̃, H
}

of filter banks to form a
PR filter bank.

a) Design: The matrix product in Eq. (3) can be split
into two products.

P01[n] · P̃01[−n] + P23[n] · P̃23[−n] = I2, (4)

P01[n]
def
=

(
ĥ00[n] ĥ10[n]

ĥ01[n] ĥ11[n]

)
, P̃01[n]

def
=

(
ˆ̃
h00[n]

ˆ̃
h01[n]

ˆ̃
h10[n]

ˆ̃
h11[n]

)
,

P23[n]
def
=

(
ĥ20[n] ĥ30[n]

ĥ21[n] ĥ31[n]

)
, P̃23[n]

def
=

(
ˆ̃
h20[n]

ˆ̃
h21[n]

ˆ̃
h30[n]

ˆ̃
h31[n]

)
.

A PR pair
{
H, H̃

}
of filter banks generate a tight frame if

their polyphase matrices are linked as

P[n] = P̃[n]T ⇐⇒ P01[n] = P̃01[n]T and P23[n] = P̃23[n]T .

If the matrices P01[n] = P̃01[n]T and P23[n] 6=
P̃23[n]T , n ∈ Z, then the frame

{
F̃, F

}
is called semi-

tight.
The design of four-channel (semi-)tight filter banks begins

from a linear phase low-pass filter h0 = h̃0, whose frequency
response (FR) ĥ0[n] = ĥ00[n]+ω−nĥ01[n] is a rational function
of ωn = e2πin/N with real coefficients that has no poles for
n ∈ Z. Assume ĥ0[n] is symmetric about the swap n →
−n, which implies that ĥ00[n] = ĥ00[−n] and ω−nĥ01[n] =
ωn ĥ01[−n]. The impulse response

{
h0[k]

}
is symmetric about

k = 0.
In addition, assume that P01[n] = P̃01[n]T and the product

P01[n] ·P01[−n] =

(
α[n] 0

0 β[n]

)
(5)

is a diagonal matrix. The assumption in Eq. (5) implies the
condition ĥ00[n]ĥ01[−n] + ĥ10[n]ĥ11[−n] = 0. The simplest way
to satisfy this condition is to define

ĥ1[n] = −ĥ01[−n] + ω−nĥ00[−n]

=⇒ α[n] = β[n] =
∣∣∣ĥ00[n]

∣∣∣2 +
∣∣∣ĥ01[n]

∣∣∣2 .
The sequence ωnĥ1[n] = ω−nĥ1[−n] and, consequently,

the impulse response
{
h1[k]

}
is symmetric about k = 1. The

product

P23[n] · P̃23[−n] = Q[n]
def
=

(
t[n] 0
0 t[n]

)
, (6)

where t[n]
def
= 1−

∣∣∣ĥ00[n]
∣∣∣2 +

∣∣∣ĥ01[n]
∣∣∣2. Thus, the design of the

PR filter bank is reduced to factorization of the matrix Q[n].
There are many ways to factorize the matrix Q[n]. One way

is to define the matrices P23[n] and P̃23[n] to be diagonal:

P23[n] =

(
ĥ20[n] 0

0 ĥ31[n]

)
, P̃23[n]

def
=

(
ˆ̃
h20[n] 0

0
ˆ̃
h31[n]

)
.
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Consequently, we have to derive four sequences ĥ20[n], ˆ̃
h20[n],

ĥ31[n] and ˆ̃
h31[n] such that

ĥ20[n]
ˆ̃
h20[n] = ĥ31[n]

ˆ̃
h31[n] = t[n]. (7)

b) Tight frame filter banks: If the following inequality
holds

α[n] =
∣∣h00[n]

∣∣2 +
∣∣h01[n]

∣∣2 > 1, n ∈ Z, (8)

then, due to the symmetry of the rational functions ĥ00[n] and
ĥ00[n], the sequence t[n] is strictly positive rational function
of cos 2πn/N). Due to Riesz Lemma , it can be factorized
t[n] = T [n]T [−n], where T is a rational function of ωn,
which does not have roots for n ∈ Z. Thus, we define

ĥ20[n] =
ˆ̃
h20[n] = ĥ31[−n] =

ˆ̃
h31[−n] = T [n]. (9)

The PR filter bank, whose filters are

ĥ0[n] = ĥ00[n] + ω−nĥ00[n] ĥ2[n] = T [n],

ĥ1[n] = −ĥ01[−n] + ω−nĥ00[−n], ĥ3[n] = ω−nT [−n],

generates a tight wavelet frame in the space Π[N ]. Certainly,
the symmetry of the FR ĥ0[n] does not guarantee the symme-
try of the FR ĥ2[n] and ĥ3[n].

c) Semi-tight frame filter banks: If the condition Eq. (8)
is not fulfilled then the sequence t[n] can be factorized as
t[n] = T [n] T̃ [−n], where T [n] 6= T̃ [n]. Thus, we obtain the
PR filter bank, whose filters are

ĥ0[n] = ĥ00[n] + ω−nĥ00[n], ĥ1[n] = −ĥ01[−n] + ω−nĥ00[−n],

ĥ2[n] = T 2[n],
ˆ̃
h2[n] = T̃ 2[n],

ĥ3[n] = ω−nT 3[n],
ˆ̃
h3[n] = ω−nT̃ 3[n],

(10)
where T 2[n] T̃ 2[−n] = T [n] T̃ 3[−n] = t[n]. The PR filter
bank defined by Eq. (10) generates a semi-tight frame in the
space Π[N ].

Remark 1: Since the rational function t[n] of ωn is sym-
metric about the change n→ −n, then it can be factorized into
product of two symmetric rational functions T [n] and T̃ [−n].
An additional advantage of the semi-tight design is the option
to swap approximation properties between the analysis and the
synthesis framelets.
As usual, a multiscale frame transform is implemented by
subsequent application of the frame transform to the low-
frequency array of the transform coefficients.

IV. SPLINE P-FILTERS

It was described above how to design a tight or a semi-
tight frame comprising four framelets starting from a low-
pass p-filter. A variety of such p-filters can be derived from
the theory of periodic splines ([6], for example). The p-filters
possess useful properties such as linear phase, flat spectra and
well localised impulse responses. The idea is to design an
N/2-periodic spline Sp(t) of order p on the grid {k}, which
interpolates the even polyphase component x0 of a signal x:
Sp(k) = x[2k]. Then, in order to derive the spline’s values
at the intermediate points s1[k]

def
= Sp(k + 1/2), which, in

a sense predict the odd polyphase component x1 of x, the
signal x0 should be filtered with some “prediction” p-filter:
ŝ1[n] = fp[n] x̂0[n]. Then, the interpolating low-pass p-filter is
defined as ĥ0[n]

def
= (1 + ω−nfp[n]) /

√
2. The corresponding

high-pass p-filter is ĥ1[n]
def
= ω−n (1− ωnfp[−n]) /

√
2. The

filters fp[n] can be explicitly calculated for any order of a
spline. For all the orders except for p = 2 (piece-wise linear
spline) the p-filters have infinite impulse response. This fact
does not complicate the implementation, which consists of
application of the forward and inverse fast Fourier transforms
and simple arithmetic operations. The finite impulse response
(up to periodization) p-filters can be derived from quasi-
interpolating splines.

Because the conventional notion of vanishing moments is
not applicable to the periodic discrete-time setting, we use
the notion of the local discrete vanishing moments (LDVM).
Loosely speaking, a framelet has m LDVM if, being convolved
with a signal containing fragments of sampled polynomials of
degree m − 1, it eliminates these fragments. If the FR of a
p-filter comprises either the factor

(
1− ω2n

)r
or the factor

sin2r πn/N then the corresponding framelet has 2r LDVM.
We designed a diverse collection of tight and semi-tight

frames originating from interpolating and quasi-interpolating
splines of different orders. Below are two examples.

d) Example 1: quadratic interpolating spline: p = 3:
The frequency response of low- and high-pass p-filters are

ĥ0[n] =
√

2 cos4 πn/N
cos4 πn/N+sin4 πn/N

ĥ1[n] = ω−n
√

2 sin4 πn/N
cos4 πn/N+sin4 πn/N

.

In this case a symmetric factorization of the matrix Q[n]
defined in Eq. (6) is possible. Therefore the p-filters h2 and
h3, which complete the p-filters h0 and h1 to the PR filter
bank, have linear phase. Their frequency responses are

ĥ2[n] =
1

2
√

2

sin2 2πn/N

cos4 πn/N + sin4 πn/N
= −ωn ĥ3[n].

The high-frequency framelet ψ1 = h1 has four LDVM, while
the framelets ψl = hl, l = 2, 3, have two.

e) Example 2: quadratic quasi-interpolating spline: In
the tight frame derived from this spline the p-filters h2 and
h3 are non-symmetric. However, the semi-tight frame, where
those p-filters are antisymmetric proved to be highly efficient
in applications. The frequency response of low- and high-pass
p-filters are

ĥ0[n] = 1√
2

cos4 πnN
(
3− cos 2πn

N

)
ĥ1[n] = ω−n

√
2

sin4 πn
N

(
3 + cos 2πn

N

)
.

Denote

T̃ [n]1 = ω4n−3ω2n+3−ω−2n

8

T [n]1 =
(1−ω2n) (−ω4n−12ω2n+346−12ω−2n−ω−4n)

1024 .

Then,

ĥ2[n] = T [n]1 = −
ˆ̃
h3[−n]

ωn
,

ˆ̃
h2[n] = T̃ [n]1 = − ĥ

3[−n]

ωn
.
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Fig. 1. Top:FB generating tight frames: impulse and magnitude responses
derived from quadratic quasi-interpolating spline. Bottom: analysis and syn-
thesis band-pass filters for semi-tight frame

The high-frequency framelet ψ1 has four LDVM. We assign
three LDVM to the analysis framelet ψ̃2 leaving only one
LDVM to the synthesis framelet ψ2 and vice versa for the
framelets ψ̃3 and ψ3. Figure 1 displays impulse and magni-
tude responses of the p-filters derived from quadratic quasi-
interpolating spline, which generate the tight and the semi-tight
frames. We observe that the impulse responses of the band-
pass p-filters for the tight frame are non-symmetric. The semi-
tight frame band-pass p-filters have anti-symmetric impulse
responses.

V. APPLICATION TO IMAGE RESTORATION

We designed a diverse library of tight and semi-tight frames,
which were extended to two dimensions via the tensor prod-
ucts of 1D framelets. The frames were tested in multiple
image restoration experiments where images were blurred,
affected by random noise and a significant number of pixels
were missing. For restoration, the SBI scheme [1] with the
designed frames was utilized. Performance of different frames
was compared. These experiments as well as the frame design
are described in details in [7]. In most cases semi-tight frames
were advantageous over respective tight frames. Especially
successful was the semi-tight frame presented in Example
2. However in some experiments, the frames derived from
higher order splines (thus having a big number of LDVM)
outperformed the frame derived from low-order splines.

f) “Boats” and “Fingerprint” images: The “Boats” im-
age was blurred by the motion kernel and its PSNR becomes
22.88 dB. Then, 70% of pixels were randomly removed. This
reduces the PSNR to 7.37 dB. The image restored using
the semi-tight frame from Example 2 with PSNR =30.28
dB. The “Fingerprint” image was affected by a strong zero-
mean white noise with STD σ = 20 after being blurred
by the Gaussian kernel (PSNR=19.75 dB). Then, 50% of its
pixels were randomly removed and this produced PSNR=9.05
dB. The frame decomposition is implemented down to the
fifth level. The PSNR=23.75 dB result was achieved by the
application of the tight frame derived from the interpolating
spline of fifth order. In this frame, the high-frequency framelet
ψ1 has six LDVM, while either of the framelets ψ2 and ψ3 has
three LDVM. Results of the above experiments are displayed
in Fig. 2. We observe that despite a strong degradation, which
made images almost undistinguishable, they are successfully
restored.

g) Restoration experiments for the “Window” image:
This image was taken from [8]. The image was blurred by

Fig. 2. “Boats” and “Fingerprint” images Top left in each quadruple –
original images. Bottom left – restored images

Fig. 3. “Window” image. Left quadruple – no-noise experiment. Right
quadruple – noise experiment

the motion kernel. In one experiment random noise presented
(PSNR= 23.56 dB), while in the other white noise with STD
σ = 5 was added (PSNR= 23.19 dB). Then, 30% of pixels
were randomly removed. This reduces the PSNR to 10.22
dB and 10.20 dB, respectively. We compared the restoration
results with the respective results reported in [8]. In the no-
noise experiment the PSNR of the image restored by the semi-
tight frame described in Example 2 was 43.78 dB versus 40.25
dB in [8]. For the noise experiment the PSNR was 28.81 dB
versus 27. 76 dB in [8]. The restoration results are displayed
in Fig. 3.
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