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Abstract—Redundant Gabor frames admit an infinite number
of dual frames, yet only the canonical dual Gabor system, con-
structed from the minimal `2-norm dual window, is widely used.
This window function however, might lack desirable properties,
such as good time-frequency concentration, small support or
smoothness. We employ convex optimization methods to design
dual windows satisfying the Wexler-Raz equations and optimizing
various constraints. Numerical experiments show that alternate
dual windows with considerably improved features can be found.

I. INTRODUCTION

Time-frequency representations, in particular Gabor trans-
forms [9], i.e. sampled Short-Time Fourier transforms, are
ubiquitous in signal processing. Gabor transforms represent
a signal as linear combination of translates and modulations
of a single window function, which for best results should be
chosen to be well-concentrated in time and frequency.

A signal can be reconstructed from its Gabor transform
using a dual system with the same modulation and translation
structure. Moreover, infinitely many such systems exist if the
Gabor transform is redundant. Finding a dual system with
desirable properties given a prescribed analysis window is the
topic of this paper.

More explicitly, for g ∈ `2(Z), and a,M ∈ Z, we define
the Gabor system

G(g, a,M) :=
(
gm,n = g[· − na]e2πim·/M

)
n∈Z, m=0,...,M−1

.

(1)
If G is also a frame [5], we refer to the system as a Gabor
frame. For f ∈ `2(Z), the corresponding Gabor transform is
given by

(Gf)[m+ nM ] = 〈f, gm,n〉 =
∑
l∈Z

f [l]gm,n[l], (2)

with the analysis operator G as given by the infinite matrix
G[m+ nM, l] := Gg,a,M [m+ nM, l] := gm,n[l].

Gabor synthesis is performed by applying the adjoint of G
to a coefficient sequence c ∈ `2(Z). The action of the synthesis
operator can be equivalently described as

fsyn[l] = (G∗c)[l] =
∑
m,n

c[m+ nM ]g[l− na]e2πiml/M . (3)

The concatenation S = G∗G of the analysis and synthesis
operators is called the frame operator.

Reconstruction can be realized using the so-called canonical
dual system, obtained by inverting S and defined as

g̃m,n = S−1gm,n. (4)

In the particular case of Gabor frames, the canonical dual
system is again a Gabor frame, i.e. it equals G(g̃0,0, a,M).
Therefore we refer to g̃ = g̃0,0 = S−1g as the canonical dual
window.

The synthesis operator of g̃ coincides with the pseudo-
inverse of the original analysis operator, i.e. G∗g̃,a,M = G†.
So the inversion formula reads

f [l] =
∑
m,n

〈f, gm,n〉g̃m,n[l] = G†Gf [l]. (5)

There are several approaches for finding the canonical dual
in an efficient way, e.g. [4], [11]. Only if the length of the
window Lg is less than or equal to the number of channels M ,
is the canonical dual guaranteed to have the same length. This
so-called painless case construction is omnipresent in signal
processing, to the point where M and Lg are not distinguished.

Redundant Gabor frames possess infinitely many dual Ga-
bor frames of the form G(h, a,M), any of which facilitates
perfect reconstruction from unmodified coefficients. On the
other hand, whenever the coefficient representation is pro-
cessed, varying dual systems provide different reconstructions
and the features of the chosen system suddenly play an
important role. Some of the ’alternate duals’ might possess
properties preferable to those of the canonical dual, e.g. shorter
support, better localization or smoothness.

For a Gabor frame G(h, a,M), the Wexler-Raz equations
[17], [20] provide a necessary and sufficient condition to con-
stitute a dual frame for G(g, a,M). Using this hard constraint,
a convex optimization problem can be defined by adding
functionals to be minimized that provide desired properties.

Recently, convex optimization in the context of audio signal
processing has grown into a active field of research and in
particular proximal splitting methods [6], [7], [8] have been
used to great effect, e.g. in audio inpainting [2], [1] and
sparse representation [12]. In those cases, optimization tech-
niques are applied directly to the signal or its time-frequency
representation. In this contribution, we apply optimization
techniques to shape the building blocks of the time-frequency
representation instead. Since a systematic evaluation of the
available optimization techniques is beyond the scope of this
contribution, we only present an exemplary realization.

Our method is a much more general approach than the
construction of non-canonical dual windows found in [19] and
optimizes several criteria at once. One particular application
of the proposed approach is the construction of smooth dual
windows satisfying a support constraint. To illustrate the
viability of our method, we choose a Gabor frame G(g, a,M)
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with g being an FIR window, i.e. a window function supported
on a finite interval Ig , and construct a smooth dual window h
supported on an interval Ih.

II. GABOR FRAMES

In this contribution, we consider Gabor systems G(g, a,M)
in `2(Z). Such a system constitutes a frame if constants 0 <
A ≤ B <∞ exist, such that

A‖f‖22 ≤ ‖Gf‖22 ≤ B‖f‖22, for all f ∈ `2(Z). (6)

In that case, the closed linear span of its elements equals `2(Z)
and every sequence f ∈ `2(Z) can be written as

f = G∗c, (7)

for some coefficient sequence c ∈ `2(Z). In particular, if
G(h, a,M) is a dual Gabor frame, c = Gh,a,Mf is one
possible choice. Note that frames are “mutually dual”, i.e. the
role of G(g, a,M) and G(h, a,M) in the considerations above
can be switched at will.

The Wexler-Raz equations [20], [17] for `2(Z) provide a
necessary and sufficient condition for a function h ∈ `2(Z) to
be a dual Gabor window for G(g, a,M). They are given by

M

a

〈
h, g[· − nM ]e2πim·/a

〉
= δ[n]δ[m], (8)

for m = 0, ..., a−1, n ∈ Z. In the equation above, δ[l] denotes
the Kronecker delta at position l. In terms of the analysis
matrix G◦ = Gg,M,a, i.e. switching the role of a and M ,
they can be stated as

G◦h =
a

M
δ. (9)

III. PROXIMAL SPLITTING METHODS

The convex optimization problems we consider are of the
form

minimize
x∈RL

K∑
i=1

fi(x), (10)

where the fi are convex functions. Note that if at least one
function fi is not differentiable, it is not possible to ap-
ply smooth optimization techniques. Proximal splitting meth-
ods [7], on the other hand may still apply. The term proximal
splitting originates from the fact that each function fi is
minimized iteratively with the help of their corresponding
proximity operator, a generalization of convex projection op-
erators, defined as follows.

Definition 1. The proximity operator of a function f ∈
Γ0(RL) is defined by

proxf (y) := argmin
x∈RL

{
1

2
‖y − x‖22 + f(x)

}
. (11)

Since f is convex, the minimization problem in (11) has a
unique solution for every y ∈ RL and consequently proxf :
RL → RL is well-defined.

More information on the properties of proximity operators
can be found in [16], [13].

From now on, we will denote by iC the indicator func-
tion [7], of a non-empty, closed and convex set C ⊂ RL by

iC : RL → {0,+∞} : x 7→

0, if x ∈ C
+∞ otherwise

(12)

and by Γ0(RL) the class of functions

Γ0(RL) =
{
f : RL 7→ R : f lower semi-continuous,

convex and proper
}
.

Indicator functions can be used to add hard constraints, e.g.
a set of linear equations that the solution must satisfy, to an
optimization problem of the form (10). More explicitly,

argmin
x∈C

K∑
i=1

λifi(x) = argmin
x∈RL

K∑
i=1

λifi(x) + iC , (13)

where C = {x ∈ RL : x satisfies the hard constraints } is
the set of admissible points. If C is non-empty and convex,
Equation (13) has a solution for any given choice of regular-
ization parameters λi, uniquely determined if at least one fi
is strictly convex.

Table I presents a list of commonly used regularizer func-
tions fi that can be combined to tune the solution x.

Table I
SOME REGULARIZATION FUNCTIONS

Function Effect on the signal

‖x‖1 sparse representation in time

‖Fx‖1 sparse representation in frequency

‖∇x‖2
2 smooth representation in time / concentrated in frequency

‖∇Fx‖2
2 smooth representation in frequency / concentrated in time

‖x‖2
2 spread values more evenly

iC(x) force x ∈ C

We decided to present a solution of (10) using the paral-
lel proximal algorithm (PPXA, Algorithm 1). However, this
contribution does not intend to propose the best method to
solve (10), and other algorithms, e.g. generalized forward
backward [15], might prove more efficient. Instead, we focus
on a new formulation of the problem of finding dual Gabor
windows.

In the next section we present one of the possible ways to
solve (10). Optimality studies are beyond the scope of this
paper and planned as future work.

IV. METHODS

Utilizing the theory established in the previous sections,
we can now describe our method in detail. We intend to
compute non-canonical dual windows for a given Gabor frame
G(g, a,M), where g is an analysis windows supported on some
finite interval Ig . Furthermore, we want the dual window to
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Algorithm 1 Parallel proximal algorithm (PPXA)
Initialize ε ∈]0, 1[, ¯̃g > 0, (ωi)1≤i≤K ∈]0, 1]K with

∑K
i=1 ωi =

1, y1,0 ∈ RL, ..., yK,0 ∈ RL

Fix θ ∈ [ε, 2− ε[
x0 ←

∑K
i=1 ωiyi,0

for n = 1, 2, ... do
for i = 1, ...,K do

pi,n ← prox¯̃gfi/ωi
(yi,n)

end for
pn ←

∑K
i=1 ωipi,n

for i = 1, ...,K do
yi,n+1 ← yi,n + θ (2pn − xn − pi,n)

end for
xn+1 ← xn + θ (pn − xn)

end for

be supported on an interval Ih and denote the convex set of
all signals satisfying this constraint by Csupp.

Considering the support constraint, we see that all but a
small subset of the Wexler-Raz equations are trivially satisfied.
Without loss of generality we assume Ig and Ih to be centered
around 0. Noting that Ig ∩ (Ih + nM) = ∅ for |n| ≥ Lg+Lh

2M ,
only the equations for

|n| < Lg + Lh
2M

, (14)

can possibly be non-zero. This makes a total of 2a(dLg+Lh

2M e+
1) equations in Lh unknowns. As a consequence, we are not
required to consider sequences of infinite length to compute
the dual window, but we can equivalently work with signals
in CL, where L is some multiple of a and M satisfying L ≥
Lg + Lh + 1.

The solutions of the non-trivial equations from the Wexler-
Raz equation system (8), numbered as in (14) form a convex
set written Cdual, providing the second hard constraint after the
support condition.

Then, C = Cdual ∩ Csupp is also convex and if non-empty1

forms a legal set of admissible points for a problem of the form
(13). To shape the resulting dual window towards some useful
properties, we select suitable regularization functions (Table I)
and parameters, employing PPXA to solve the resulting convex
optimization problem, converging to the unique solution. The
indicator functions iCdual and iCsupp are used to realize the duality
and support constraints.

Experience shows that PPXA needs a large number of
iterations to perfectly satisfy the hard constraints. To speed up
this process, a final projection is performed once the algorithm
converges to a certain accuracy. If there is more than one reg-
ularization function to be minimized, the projection is realized
by a POCS (Projection Onto Convex Set) algorithm [10], [21],
governed by the updating rule

xn+1 = PCsupp
(
PCdual (xn)

)
.

1To determine whether C is non-empty is a nontrivial task and investigating
this set is planned for future work. In the experiments conducted so far, the
support constraints and redundancy were determined heuristically.

A. Compactly supported duals by truncation

In [19], Strohmer proposed a simple algorithm for the
computation of compactly supported dual windows, which we
will call the truncation method. Strohmer proposed to truncate
the Wexler-Raz equations as described in the previous section
and then solve the resulting equation system by computing the
Moore- Penrose inverse, obtaining the least-squares solution.
While the resulting windows satisfy the duality conditions,
they are not very smooth and indeed show some discontinuity-
like behavior, see also Figure 1(e,f). One of the goals of this
contribution is the improvement of these undesirable effects.

V. NUMERICAL RESULTS

We present the construction of a smooth dual Gabor window
with short support. Our setup considers G(g, 30, 60), i.e. a
system with redundancy 2, where g is a “Nuttall” window
[14] of length Lg = 120 samples, see Figure 1(a,b).

We aim at computing a dual that is supported on
the same interval as the analysis prototype, yielding
Csupp = {x ∈ RL : supp(x) ⊆ supp(g)}. To further provide
reasonable localization and smoothness, we select the regular-
ization functions f1 = ‖ · ‖1, f2 = ‖F(·)‖1, f3 = ‖∇(·)‖22
and f4 = ‖∇F(·)‖22. The result shown in Figure 1(c,d) shows
the optimal dual window with regards to the regularization
parameters λ1 = λ2 = 0.001 and λ3 = λ4 = 1. Those
values are choosen experimentally by considering that they are
balancing the effect of the regularization functions as described
in Table I. As reference, we included the least-squares solution
provided by the truncation method, see Figure 1(e,f).

Minimizing the selected regularization functions improves
upon the desired features, in particular smoothness (or fre-
quency localization) with f3 and time localization with f4.
The functions f1 and f2 avoid the solution to have a “M-
shape”, i.e. multiple peaks. This is unwanted as the temporal or
frequency positions becomes ambiguous. Indeed, minimizing
the l1-norm will push all big coefficients to similar values.

The solution provided is assumed to perform perfect recon-
struction on any signal with admissible length greater or equal
to L. More precisely, by [11, Eq. (60)], the maximum relative
reconstruction error can be shown to be of the order of the
precision of the machine, more precisely at 4.5e−14.

Simulations were performed using the LTFAT [18] and the
UNLocBoX matlab toolbox. A reproducible research adden-
dum is available in http://unlocbox.sourceforge.net/rr/gdwuco.

In the experiment above, we constructed a smooth, well
localized dual window, compactly supported with Lh = 120.

Considering the painless case, to guarantee the canonical
dual window to be supported on Lg̃ = Lg , enforces M ≥
120 therefore increasing the redundancy twofold, an unwanted
side effect. Alternatively, in this setting, we could decide to
keep the parameters a = 30, M = 60 fixed, but decrease the
window size to Lg ≤ 60. However, this construction provides
a system with a more than 8 times larger frame bound ratio.
Consequently, the resulting canonical dual window g̃, shown in
Figure 2, shows bad frequency behavior and an undesirable,
M-like shape in time. In contrast, the method proposed in
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Figure 1. Experiments. (a) Analysis window in time. (b) Analysis window in
frequency. (c) Synthesis window in time. (d) Synthesis window in frequency.
(e) Truncation method in time. (f) Truncation method in frequency.

this manuscript allows the use of nicely shaped, compactly
supported dual Gabor windows at low redundancies, without
the strong restrictions of the painless case.

Figure 2. Half-overlap painless case construction (G(g, 30, 60), Lg = 60):
Canonical dual window in time (a) and in frequency (b).

VI. CONCLUSION

We have proposed an algorithm for the design of non-
canonical dual Gabor windows based on methods from convex
optimization. Contrary to earlier methods, the algorithm dis-
cussed in this manuscript allows users to tune the dual window
with regards to different desirable criteria. To illustrate the
usefulness of the algorithm, we provided an example using a
hard support constraint and shaped the window into a smooth
shape using `1 priors on the window and its Fourier transform,
as well as an `2 prior on its gradient. The result obtained
considerably outperforms the result of an older method [19]
that does not employ any smoothness constraints.

Our method can be applied in various situations to construct
dual frames with properties more important for application
than minimal `2-norm. Future work will further be concerned
with applying the findings herein to frames with a different
structure, e.g. nonstationary Gabor frames [3].
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