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Abstract—Localization microscopy such as STORM/PALM
achieves the super-resolution by sparsely activating photo-
switchable probes. However, to make the activation sparse enough
to obtain reconstruction images using conventional algorithms,
only small set of probes need to be activated simultaneously,
which limits the temporal resolution. Hence, to improve tem-
poral resolution up to a level of live cell imaging, high-density
imaging algorithms that can resolve several overlapping PSFs
are required. In this paper, we propose a maximum likelihood
algorithm under Poisson noise model for the high-density low-
SNR STORM/PALM imaging. Using a sparsity promoting prior
with concave-convex procedure (CCCP) optimization algorithm,
we achieved high performance reconstructions with fast recon-
struction speed of 5 second per frame under high density low SNR
imaging conditions. Experimental results using simulated and
real live-cell imaging data demonstrate that proposed algorithm is
more robust than previous methods in terms of both localization
accuracy and molecular recall rate.

I. INTRODUCTION

For the past decades, several innovative methods for sur-
passing the diffraction limit in far-field optical microscopy
have been proposed. It is now well known that their significant
resolution improvement was originated from exploiting the
optical non-linearity. For example, STED and SSIM can
achieve the super-resolution by exploiting the non-linearity of
high power illumination, whereas the stochastic optical recon-
struction microscopy (STORM) [1] and photo-activated local-
ization microscopy (FALM) [2] exploit non-linearity of pho-
toswitchable fluorescence dyes. Specifically, STORM/FALM
rely on sparse fluorophore activations such that fluorophores
are sparsely activated in both spatial and temporal domain.
When the point spread functions (PSFs) of the activated
fluorophore are usually not overlapped, these fluorophores can
be localized individually based on the least-squares [1], [2]
or the maximum-likelihood [3] PSF fitting. To achieve sparse
activation, an accumulation rate of localized fluorophores is,
however, limited; so that typically several thousands frames
are required to reconstruct a single super-resolution image. In
other words, its temporal resolution is on the order of minutes,
which allows only limited live-cell imaging.

In order to improve the temporal resolution, one of the
possible approaches is high-density imaging. However, in the
high-density imaging, many fluorophores are activated at the
same time so that there are many overlapping PSFs at each
snapshot. There have been several approaches to resolve the

overlapping PSFs. For example, DAOSTORM algorithm [4] it-
eratively fits overlapping spots in a greedy manner. CSSTORM
(compressed sensing STORM) [5] and DeconSTROM [6]
solve this problem as a sparse recovery among which the latter
approach has been demonstrated to be more efficient for high-
density imaging in terms of localization accuracy as well as
molecular recall rates. For example, in CSSTORM, Gaussian
noise model with sparsity constraint is assumed, which is
solved by linear programming. As linear programming is
computationally expensive, it adopts the local approach in
which a reconstructed image is divided into several small-sized
blocks processed individually, which potentially degrades the
localization accuracy. In DeconSTORM, they use a modified
Lucy-Richardson deconvolution in order to utilize Poisson
statistics and temporal correlation of activated fluorophores.

In this paper, we present a new localization algorithm
for high-density imaging by using a maximum likelihood
estimation with a sparsity constraint, which is extremely fast
compared to the existing approaches due to perfectly paral-
lelizable structure. Using both simulation and real experiment,
we confirmed that the proposed algorithm is especially robust
in high-density live-cell imaging at low SNR by low emitted
photons from activated fluorophores and high background
level.

II. CCCP FRAMEWORK USING GENERALIZED HUBER
PENALTY

A. Problem Formulation

Let x € R", r € R and y € R™ denote the unknown
fluorophore distribution, background fluorescence signals, and
detector measurements, respectively; and A = [aij]zlj’il de-
notes the probability matrix that a emission photon from a
voxel is detected at a detector position. Then, the negative
loglikelihood function from Poisson intensity measurement is

given by:

Lx) = 17(Ax+r)—y"log(Ax +r) (1)

where 1 denotes a vector with elements of ones with an
appropriate size and log(Ax + r) is treated as element by
element operation. Then, our superresolution imaging problem
can be formulated as the following minimization problem:

min J(x) where J(x) = L(x)+pen(x), (2)
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where the penalty function pen(x) imposes a penalty to
guide the reconstruction. Note that the optimization problem
is not trivial since 1) the gradient of L(x) is non-Lipschitz,
and 2) each element of x should be nonnegative. Another
technical difficulties in minimizing L(x) in Eq. (1) is the
existence of non-separable term in the likelihood, i.e. log (Ax).
Quadratic approximation [7] or Anscombe transform [8] was
used to make this separable. Recently, for the case of Poisson
image deconvolution using total variation (TV) or frame based
analysis/synthesis penalty, Figueiredo and Bioucas-Dia [9]
proposed so-called PIDAL algorithm using alternating direc-
tion of method of multiplier (ADMM) without approximating
the Poisson loglikelihood. However, these ADMM algorithm
requires huge additional memory to store the Lagrangian
parameters to deal with non-separability of loglikelihood and
the non-negativeness of x.

To overcome these issues, this paper proposes a new opti-
mization algorithm using the concave-convex procedure [10],
which does not need any approximation of the cost function, or
to store additional Lagrangian parameters. CCCP is a special
case of majorized-minimzation algorithm, which utilizes the
Legendre-Fenchel transform as a majorization function.

Legendre-Fenchel Transform of the Penalty: More specifi-
cally, as a sparsity inducing penalty, consider the following:

1%l = thp(zj)a
j=1
where the generalized p-Huber function h,, ,(¢) is defined as

t2/2u, if [t| < pt/-P)
hw(t):{ %/ It]

[tP/p—¢& if |t| > pt/ =P
and where 6 = (1/p — 1/2)u?/(>=P) to make the function
continuous and differentiable [11]. Note that for p < 1 the
prior is non-convex. For the generalized p-Huber function in
Eq. (4), it is easy to show that |t[?/p — h,p(t) is strictly
convex [12]. Therefore, the Legendre-Fenchel transform tells
us that there exist g, , such that

hu,p(t) = msin{|s - t‘2//~L + gu,p(s)} . &)

Chartrand [13], [11] showed that g,, ,(s) is convex when p =
1, but in general it is not convex. However, even when g, ,(s)
is non-convex, |s|?/p+ g, (s) is convex and Eq. (5) becomes
a convex minimization problem with respect to s that has a
closed form expression for the minimizer given as

shrink, (t,n) := argmin{|s — ¢t|*/u+ g,up(s)}
= max{0, [t| — u|t|P~It/|t] . (6)

0<p<l. 3)

“)

Here, p € [0, 1] in which p = 0 is similar to hard thresholding
and p = 1 is the same as soft thresholding [11].
Legendre-Fenchel Transform of the Negative Loglikelihood:
Note that the negative loglikelihood term for the Poisson noise
in Eq. (1) is convex. However, to deal with the existence of
non-separable term in the likelihood, we utilize the CCCP with
the help of a concave coordinate transform. More specifically,

using an appropriate coordinate transform and application of
Legendre-Fenchel transform, we can show that

L(x) = minL.(x,c)
Le(x,¢) = Z Za”xj + i log Y log(y:)
=1 \iol aijTj
+ Z (n +cilog — ) (7)

i=1
and C; + Z;n:l Cij = Y;.
B. Optimization Framework
Now, we have the following minimization problem:

min L.(x,c) +)\Z (ij —wj|? +gup(wj)> , (8

X,C,W
j=1

1) Minimization with respect to w: Using the shrinkage
relationship in Eq. (6), the close form solution is given by

w;kﬂ) = shrinkp(xﬁk), ).

2) Minimization with respect to c¢: The minimization prob-
lem has been studied by Hsiao et al [14] using Lagrangian for
the constraint ¢; + Z?Zl cij = y; and it has been shown that
we have the following closed form solution for the constrained
optimization problem [15]:

ylaux( )

n
Z], 1 a”/x<,) +r

YiTi
Z;L/ 1 az]’x(/> + T’L
&)

kD

(k+1) _
7,] C; -

3) Minimization with respect to x: Finally, for given c(*+1)
and w(k“), we can obtain a closed form solution for the
update of x(*t1) More specifically, a fixed point equation of
the gradient of the cost function with respect to x; satisfies
the following second order polynomial:

> CEZ‘CH) A
0= ay - = —+ (- ™), (0
i J

7!
Define

I

d:= ia k+1 = (Z alj) - (k+1)

Then, the closed form solution is given by

_b§_k+1) n \/(bg_kﬂ))g +4dm§3M(k+l) ST g

(1) _ Y
where 25 f++1) i similar to an ML-EM update given by
EM (k+1 & i Yi
EM(k+1) J Z J .(12)
! 2im1 i i Doy Qi o

Note that the solution is always non-negative, satisfying the
positivity constraint. Moreover, our update equation is a
pixel-by-pixel update similar to ML-EM algorithm or Lucy-
Richardson method.
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4) Advantages of the Proposed Method: Compared to a PI-
DAL type algorithm, the proposed method has a unique advan-
tage well-matched to super-resolution localization microscopy.
The additional memory requirement for a Lagrangian ap-
proach is eliminated. Indeed, the computational complexity
and memory usage during the calculation of z; is similar to
the standard Lucy-Richardson deconvolution method. Hence,
the algorithm lends itself to a fast GPU implementation thanks
to the efficient memory utilization and pixel-by-pixel update.
On a intel 17 920 (CPU) and a Tesla C1060 (GPU), our GPU
implementation of the proposed method takes only 5 seconds
in reconstructing a five over-sampled image of a 128 x 128
CCD image with 1500 iterations.

III. EXPERIMENTAL RESULTS

We performed experiments using simulated data and real
high-density live-imaging PALM data. We compared the
following algorithms: the least-square Gaussian fitting[1],
CSSTORMY(5], FISTA[16] using 11 norm, and the proposed
algorithm. In CSSTORM, FISTA, and the proposed algorithm,
uniform background is assumed and estimated. In the least-
squares method, an elliptical Gaussian PSF to local maxima
of the image is fitted.

A. Simluation

In the simulated data, each nanoscale molecule provides a
Gaussian PSF of 340nm full width half maximum (FWHM).
Emitted photons of the molecules follow the log-normal dis-
tribution with mean of 500 and standard deviation of 100.
In order to generate low-SNR data, 70 background photons
are added to every CCD pixel of 100 nm. In addition, we
introduced Poisson shot noise and Gaussian readout noise
with unit variance. We generated a data set of a wide range
of imaging densities, from 0.2um~2 to 3.4um~2. At each
density level, flurophores are generated at random locations
within 40x40 pixel image, and the total of 30 realizations
were used. To quantify the error, each true molecular positions
are matched to the closest localized fluorophore within 200nm
radius. Then, we calculated the standard deviation of the
localization errors and the molecular recall rates.

In all ranges of the density level, the proposed algorithm
demonstrated better recall rates than the others. Specifically,
the proposed algorithm can identify 10 times more fluorophore
molecules than the least-squares method, and improve about
10-30% compared to CSSTROM and FISTA. Moreover, the
proposed method is much accurate than CSSTROM & FISTA
in terms of localization accuracy. While the least squares
method have the smallest localization error, these errors are
only for the corrected identified fluoresphores, whose number
is significantly smaller compared to others. Therefore, this
confirmed that the proposed algorithm is more effective in
low-SNR & high-density imaging data than the conventional
approaches.

B. Live-cell Super-resolution Imaging

U20S cells were maintained in Dulbecco’s Modified Ea-
gles’s Medium (DMEM) (Gibco) supplemented with 10% Fe-
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Fig. 1. Simulation analysis on low-SNR STORM/PALM data. (a) Local-
ization error. (b) Identified molecular density. Cramer-Rao bound(CRB) is
theoretical minimum accuracy of single molecule localization.

tal Bovine Serum (FBS) (Gibco) in an atmosphere containing
5% CO2 at 37 °C. Cells were cultured and maintained in T-25
flasks and grown to about 70% confluency (corresponding to
2 days) before they were passaged. Prior to staining, cells
were washed once with PBS (Sigma). A 200 nM dilution
of Mitotracker Red CMH2XRos (Invitrogen) was made in
Leibovitz (Invitrogen) and labelled in an inner membrane of
the mitochondria. Cells were incubated with the dye for 1520
min at 37 °C in a CO2 atmosphere.

Imaging was performed on an inverted microscope (IX71,
Olympus), equipped with an oil-immersion objective (UP-
IanSAPO 100 x, NA=1.40, Olympus). A 561 nm (Sap-
phire 561, Coherent) was used to excite Mitotracker Red
CMH2XRos and fluorescence was directed onto an electron
multiplying CCD camera (iXon+, Andor) with a resulting
pixel size of 100 nm. The laser intensity was approximately
3 kW cm ~2 and an ET605/70 (Chroma) emission filter was
used. 4000 frames were collected with a 20 ms exposure
time per frame. Using the experimental data, we compared
the reconstruction results using the three algorithms (Least-
squares, FISTA, and the proposed). The proposed algorithm
localized 30 % more molecules than FISTA and 8 times more
than the least-squares. In figure 2(b-d), the proposed results
show better internal matrix structure and have much clear
boundaries of mitochondria than the others. Moreover, the size
of the reconstructed mitochondria using FISTA (c) seems to be
reduced compared to that of the proposed method (d). In order
to observe the dynamic of mitochondria, we created time-lapse
images (e,f). Every images in (e,f) were generated from the
1000 consecutive CCD frames for 20 sec and the time-gap
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Fig. 2. Live-cell imaging of Mitochondria. Inner membrane of the Mitochondria was labbeled by Mitotracker. (a) Conventional image. (b)Least-square fitting.
(c) FISTA decon. (d)Proposed. (e,f) Conventional and Proposed time-lapse images. Every image is generated from consecutive 1000 CCD frames(20sec) and
time-gap is 10sec. (a-d) images correspond to blue maker in (e,f). Scale-bar in (a-d) is 1um.

between successive acquisitions was 10 sec. In the time-lapse
images (e-f), we observed slow movements of mitochondria.

IV. CONCLUSION

We present a new localization algorithm for high-density
super-resolution microscopy using the maximum-likelihood
estimation of the Poisson noise model with sparsity promoting
prior. Using concave-convex procedure, a highly parallelizable
algorithm has been derived, which results in a fast GPU
implementation with speed of 5 sec per frame. We demon-
strated that our algorithm is much effective in low-SNR PALM
data over wide range of imaging density in terms of recall
rate and localization accuracy. Therefore, we expect that the
proposed approach can significantly reduce the number of
required CCD frames for super-resolution imaging, which
can improve the temporal resolution significantly. Thus, our
approach is appropriate for live-cell imaging to investigate
biological interactions at the nanometer scale.
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