Proceedings of the 10th International Conference on Sampling Theory and Applications

Particle Filter Acceleration Using Multiscale
Sampling Methods

Yaniv Shmueli Gil Shabat

School of Computer Science School of Electrical Engineering School of Mathematics

Tel Aviv University
yaniv.shmueli @cs.tau.ac.il

Tel Aviv University
gil@eng.tau.ac.il

Abstract—We present a multiscale based method that acceler-
ates the computation of particle filters. Particle filter is a powerful
method that tracks the state of a target based on non-linear
observations. Unlike the conventional way that calculates weights
over all particles in each cycle of the algorithm, we sample a
small subset from the source particles using matrix decomposition
methods. Then, we apply a function extension algorithm that uses
the particle subset to recover the density function for all the rest
of the particles. As often happens, the computational effort is
substantial especially when tracking multiple objects takes place.
The proposed algorithm reduces significantly the computational
load. We demonstrate our method on both simulated and on real
data such as tracking in videos sequences.

Index Terms—particle filter, multiscale methods, nonlinear
tracking

I. INTRODUCTION

Particle filter (PF) is a powerful method for target state
tracking based on non-linear observations obtained by a
Monte-Carlo approach [1]. The advantages of PF over different
tracking methods such as Kalman filter are in its ability to
use non-linear models and the ability to use non-Gaussian
distributions. On the other hand, the disadvantage of the PF
is its use of Monte Carlo as the performance of the PF
strongly depends on the number of particles used. A large
number of particles will simulate the required distributions
more accurately leading to better results but also increase
significantly the computational load. In many cases, weight
computation of each particle can be computationally expen-
sive. A common example for this case is object tracking in
videos where the weight of each particle is determined by
the Bhattacharyya coefficient [2] or by Earth-Moving-Distance
(EMD) [3], which requires to evaluate histograms over a large
number of bins, especially when color is involved. When
the number of particles is either moderate or large (typically
a few thousands) the computational load becomes a serious
bottleneck to achieve real-time processing.

In this work, we propose a new method to evaluate par-
ticles weights using multiscale function extension (MSE)
algorithm [4]. The MSE approach consists of two steps:
subsampling and extension. In the subsampling step, the
particles are sampled to achieve maximal coverage using a
small fraction of the actual number of particles with respect
to their density. This is done by a special type of matrix
decomposition called Interpolative-Decomposition(ID). Then,

Amir Averbuch
School of Computer Science
Tel Aviv University
amir@math.tau.ac.il

Amit Bermanis

Tel Aviv University
amitberm @post.tau.ac.il

the weights are computed for this small set of particles. In
the next step (extension), the weights are extracted for the
rest of the particles using the MSE method. The method uses
coarse-to-fine hierarchy of the multiscale decomposition of
a Gaussian kernel that represents the similarity between the
particles. This generates a sequence of subsamples, which we
refer to as adaptive grids, and a sequence of approximations
to a given empirical function on the data, as well as their
extensions to any missing multidimensional data point. Since
in many cases the computational load of the weights is heavy,
this approach can reduce the computational load significantly
and accelerate the PF, allowing us to use more particles.
Increasing the number of particles is needed since many of
today tasks are geared to track objects “buried” in huge data
streams such as video, communication and telemetric data.

Particle filters were studied in many works and used in sev-
eral applications domains such as computer vision, robotics,
target tracking and finance. While PF can be robust to both
the input observations distribution and the behavior of the
additive noise, its implementation is computationally intensive.
Making it working in real-time (computationally efficient) has
become a major challenge when objects tracking is done in
high dimensional state space, or when dealing with multiple
target tracking. Comprehensive tutorials and surveys on the
different variations and recent progress in PF methods are
given in [1], [5].

II. PARTICLE FILTER ALGORITHM

In general, PF is a model estimation technique based on
simulation that uses Monte Carlo methods for solving a recur-
sive Bayesian filtering problem [1]. It is used for estimating
the state x,, at time n from a noisy observations ¥, ..., Yn.
A dynamic state space equations are used for modeling and
prediction. The basic idea behind PF is to use a sufficiently
large number of “particles”. Each particle is an independent
random variable which represents a possible state of the target.
For example, a state can be a location and velocity. In this
case, each particle represents a possible location and velocity
of the target from a proposed distribution. The system model
is applied to the particles in order to perform prediction to
the next state. Then, each particle is assigned a weight, which
represents its reliability or the probability that it represents
the real state of the target. The actual location (the output

240

Proceedings of the 10th International Conference on Sampling Theory and Applications

of the PF) is usually determined as the maximal likelihood
of the particle’s distribution. The algorithm robustness and
accuracy are determined by the number of computed particles.
A large number of particles is more likely to cover a wider
state subspace in the proximity of the target, as well as a better
approximation of the state distribution function. However, the
cost of such improved tracking produces higher computational
load since each particle needs to be both advanced and
weighted while this is repeated in each cycle.

IIT. MULTISCALE FUNCTION EXTENSION

Given a set of N particles Py = {pi1,p2,...,pn} and
their mutual distances, we wish to estimate the value of their
weight function through a small subset P, of n particles
(n < N is a predefined number), for which we compute
the weights directly. Formally, our goal is to interpolate the
weight function W : P, — R to Py, given a distance
function d : Py x Py — R. For that purpose we use the
multiscale function extension (MSE) [4], which is a multiscale,
numerically stable interpolation method.

Each scale of the MSE is divided into two phases - a
subsampling phase and an extension phase. The first phase
is done by a special decomposition, known as interpolative
decomposition (ID), of an affinities matrix associated with
P.. The second phase extends the function from P, to Py,
using the output of the first (sampling) phase. The essentials of
the MSE are describe in sections III-A and III-B. For further
reading we refer the reader to [4].

We use the following notation: s denotes the scale param-
eter, s = 0,1,..., e, = 27 %¢y for some positive number e,
and g (r) = exp{—r2/e,}. For a fixed scale s we define
the function gj(.s) : Py — R, gj(»s)(p) = g®)(d(p;,p)) to be
the Gaussian of width ¢, centered at p;. AG) is the n x n
affinities matrix associated with P,,, whose (7,j)-th entry
is g(s)(d(pi,pj)). Note that the j-th column of A®) is the
restriction of g§s) to P,. Py, is the complementary set of P,
in Py. The spectral norm of a matrix A is denoted by || 4],
and its j-th singular value (in decreasing order) is denoted by

O'j (A) .
A. Data subsampling through ID of Gaussian matrix

Let s be a fixed scale. Our goal is to approximate W by
a superposition of the columns of the affinities matrix A(*),
then to extend W to p, € P, based on the affinities between
p« and the elements of P,. At first sight, we could solve
the equation A®)¢ = W and, using the radiality of ¢(*), to
extend W to p. by W(p.) = 7, cig](s)(p), which is exact
on P, ie. W(p;) = W(p;),j =1,2,...,n. This method is
known as Nystrom extension [6], [7]. As proved in [4], the
condition number of A(*) is big for small values of s, namely
A®) is numerically singular. On the other hand, too big s
would be resulted in a short distance interpolation. Moreover,
even if we would choose such s for which A(®) is numerically
non-singular and the interpolation is not for too short distance,
interpolation by a superposition of translated Gaussian of fixed
width, would not necessarily fit the nature of .

In order to overcome the numerical singularity of A®*), we
apply an interpolative decomposition (ID). The deterministic
version of the ID algorithm can be found in [4], whose
complexity is O(mn?), and a randomized version can be
found in [8]. The latter is based on random-projections and
its complexity is O(k?nlogn). Since each column of A(*)
corresponds to a single data point in P, selection of columns
subset from A(*) is equivalent for subsampling of P, data
points.

B. Multiscale function extension

Let A®) = B()P() pe the ID of A®), where B(®) is an
nx k matrix, whose columns constitute a subset of the columns
of A®), and let P®) = {p,,,...,ps,} the associated sampled
dataset. The extension of W to P;. is done by orthogonally
projecting W on the columns space of B(*), and extending
the projected function to P in a similar manner to Nystrom
extension method, using the radiality of ¢(*). The single scale
extension (SSE) algorithm can be found in [4] (Algorithm 3),
whose complexity is O(nk?).

Obviously, w(*) is not necessarily equal to w, namely the
output of the SSE algorithm is not an interpolant of w. In
this case we apply the SSE algorithm once again to the
residual w—w(*) with narrower Gaussian, that ensures a bigger
numerical rank of the next-scale affinities matrix AG+1) and,
as a consequence, a wider subspace to project the residual on.
Such approach is described in Algorithm 4 in [4]. We shell
call this algorithm the multiscale extension (MSE) Algorithm,
whose complexity is O(n?).

IV. MULTISCALE PARTICLE FILTER (MSPF)

In order to accelerate the PF computation, while executing it
with a large number of particles, we will apply an intelligent
sampling of the particles, followed by an extension method
to compute the weights of the rest. This will allow us to
compute a relatively small number of particle weights in each
cycle. Such approach can be effective if the particle weight
calculation is computationally expensive.

A. Particle Subsampling

In each cycle of the PF algorithm, we first resample a new
set of N particles from the set P = {xi"), wﬁ”’}, n=1,.,.N
using their weights as the distribution function. Once we apply
the dynamic model on each particle and advance it, we need
to compute their new weights. To do that, we first select a
small subset of the particles. We wish to find a good set of
particle candidates that will capture the geometry of the weight
function W : P,, — R. To find such candidates, we define a
distance metric between the particles. In our experiments we
used the euclidean distance between each two particles viewed
as vectors, but other metrics can be used as well. We select
the particle candidates using the ID Algorithm described in
Section III-A. We construct an affinity matrix A(®) containing
the affinities between the particles, using a Gaussian kernel

241

Proceedings of the 10th International Conference on Sampling Theory and Applications

that is based on the given distance metric d(p;,, j) between
the particles.

—d(pi,p;)?
€5

[A®)],; = exp () i =1,.,N. (IV.])

We calculate the affinities for all the particles in P so A(*)
is an NV x N matrix defined by Equation IV.1. The number
of candidates we wish to receive is at most k. The value k is
usually selected according to the computation budget we have
to calculate the weight function in each cycle. The output of
the ID algorithm will be a set Py, of k particles selected from
‘P. We compute the weights of the k particles we selected, as
we do in the original PF algorithm.

B. Weight Calculation using Function Extension

Now that we have a set of particles Py, = {x§71’), w,ﬁ”)}, n=
1, .., k with their calculated weight values, we can continue and
compute the weights of the rest of the particles. Using the MSE
algorithm, we compute the weight value of each of the other
N —Fk particles, by using the set Py, and the first k¥ columns of
the affinity matrix A,(j). These columns contains the affinities
between each pair of particles in Py, and the affinities between
particles in Py, and all other particles. The output of the MSE
algorithm is the weights of the N — k particles that were not
selected in the previous step. The extension method allow
us to avoid a direct computation of the weight for the rest
of the N — k particle. This is especially effective when we
can not compute the weight for all particles if the observation
has some missing data, or if the computation is too intense.
Once we calculated all the weights we select the particle with
the maximum likelihood (weight) as the prediction result and
continue to the next cycle.

V. EXPERIMENTAL RESULTS

To test the performance of Algorithm IV.1, we preformed
several experiments of tracking objects in both synthetic
and real videos, and comparing the results to other tracking
methods.

A. Multiple Target Tracking

he MSPF Algorithm IV.1 was tested on a video sequence
that contains multiple objects. In this case, the tracking was
achieved by the application of two different PF types algo-
rithms, where each had its own set of particles and a separate
set of observations. Each particle describes a state of a single
target. Another approach to track multiple objects is to create
a “super-state” particle, which describes the state of all the
objects inside the video sequence. In this case, the number
of fields inside the particle vector was n X k where n is the
number of targets and £ is the number of parameters required
to describe a single target. In the latter scenario, the MSE
algorithm outperformed standard interpolation methods since
it handled better data points in high dimensions. The advantage
of using the “super-state” particle is by enabling to advance
a particle state by dynamic model equations that took into

Algorithm IV.1: Multiscale Particle filter
Input: Initial state x¢ and current observations ¥y, ...
Output: Estimated observations x1, ...,z

1: Initialize weights w(()")

n=1,...,N.
2: for time steps t=1,....,T do
3: Resample N new particles by their distribution
determined by weights: w§”>
4: Prediction: Apply the dynamic model on each particle
to estimate next state using x;—; and yi, ..., Ys

jji(fn) ~ Q(xgn) |x§"l)17 ARREED) yt)

y YT

=%, and 1:6") ~ p(xg),

5: Selection : Select a subset of size k out of the new
particles #\", by computing the affinity matrix A()
and using the ID Algorithm.

6: Calculate weights of the k selected particles using

p(yel ™ p(at™ i)

Q(xt|$§i)1, Y1y eeey yt)

7. Weight extension: Calculate the weights of the
N — k particles using the Multiscale Function
Extension Algorithm (See Algorithm 4 in [4]).

8: Normalize weights:

w,g") x ,n=1,..,N

Wy N (i
2im1 wﬁ :
9: Set x; to be the particle igi)
@ > ™ n=1,,N
10: end for

with maximum weight

account the state of all the objects within a particle including
dependencies between objects.

In order to test the tracking performance using the “super-
state” particle, we tracked two tennis players in a video
sequence. The players are represented by a single particle with
6 x 2 = 12 coordinates, 6 for each player (location in = and y,
velocity in z and y, width and hight). In each algorithm cycle,
the prediction step advanced the particles by the application
of the model equations separately to each coordinate. The
weight calculation was done in each region separately and
then multiplied the Bhattacharyya coefficient to obtain a single
weight. Then, the extension step was applied as before using
the weighted Euclidean metric for each particle that has 12
coordinates. By using Algorithm IV.1, we were able to track
both targets successfully with the lowest computational cost
in comparison to other extension methods that are based on
standard interpolation such as B-splines, cubics and nearest
neighbor. We used 1500 particles to track both players. In
each step of the algorithm, we calculated the weights for 150
selected particles and interpolated the weights for the other
1350 particles by using the MSE method. The complete videos
of the basketball and tennis games tracking can be seen in our

242

Proceedings of the 10th International Conference on Sampling Theory and Applications

250

i Multiscale(ID)
@ multiscale(WFPS)
0 linear
0 Cubic

200+

150

100+

Tracking Distance Error (RMSE)

s0f \

L
0 50 100 150
Particle Sampling Number

Fig. V.1. Comparing the RMSE between different methods - multiscale with
ID sampling , Multiscale with WFPS sampling, linear approximation, cubic
approximation.

website!.

B. Comparison with Other Approximation Methods

In order to compare the proposed method with different
approximation methods, we applied the PF algorithm and
in each run we used a different approximation method to
calculate the particle’s weights. In this comparison, we used
a synthetic movie. We generated a video sequence by moving
a colored disc over a still image. The disc moved along a
non-linear parametric function. This allows us to know the
ground truth of the target at any frame. We applied the PF
algorithm to the synthetic video sequence several times, each
with different interpolation method. We compared the total
Root Mean Square Error (RMSE) for each approximation
method measured on the distance between the estimation and
the real location of the target. The MSPF Algorithm IV.1 had
the lowest error rate even when we use a sampling factor
between 2%-5% from the total number of particles. When such
subsampling factor was used, all the other tested methods fail
(error grew).

Overall, the MSPF Algorithm IV.l1 achieved the lowest
computational time while maintaining a low error rate.

C. Comparison with the EMD Measurement

Recently, the Earth Moving Distance (EMD) [3] was used
for particles weight computation since this particle weight fits
deformable objects [9]. We tested Algorithm IV.1 with the
EMD metric to demonstrate how well the extension scheme fits
it. Several runs were conducted on the “Lemming” sequence
from the PROST database. Weights were calculated for 10%
from the total number of particles while the rest of the particles
were estimated using the MSE Algorithm.

Table V.1 shows the time differences between the naive
version of the PF algorithm that uses the EMD metric and our

Thttp://www.cs.tau.ac.il/~yanivshm/mspf

TABLE V.1
EMD ACCELERATION TIME COMPARISONS IN [SEC]. SAMPLING WAS 10%
FROM THE TOTAL NUMBER OF PARTICLES.

of Time Time Acceleration
Particles [no MSE] [with MSE] Factor
2000 63 10.6 5.9
4000 125 32 39
6000 187 75.4 2.5
8000 260 151 1.7
10000 294 266 1.1

implementation that uses the MSE Algorithm. For the latter,
10% of the particles were sampled, and the MSE was applied
to the other 90% of the particles.

VI. CONCLUSION

In this work, we presented several contributions. We reduced
the PF computational time by applying a novel multiscale
extension (MSE) method to reduce the particle weight cal-
culation. This allowed us to use more particles within a
given computational budget thus improving the performance
of the PF. We tested our modified PF algorithm on real video
sequences to track a single and multiple targets, and compared
it with other extension methods.

ACKNOWLEDGMENT

This research was partially supported by the Israel Science
Foundation (Grant No. 1041/10) and by the Israeli Ministry
of Science & Technology (Grant No. 3-909).

REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 174188,
2002.

A. Bhattacharyya, “On a measure of divergence between two statistical

populations defined by their probability distributions,” Bull. Calcutta

Math. Soc, vol. 35, no. 99-109, p. 4, 1943.

Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance as

a metric for image retrieval,” International Journal of Computer Vision,

vol. 40, no. 2, pp. 99-121, 2000.

[4] A. Bermanis, A. Averbuch, and R. Coifman, “Multiscale data sampling

and function extension,” Applied and Computational Harmonic Analysis,

vol. http://dx.doi.org/10.1016/j.acha.2012.03.002, 2012.

A. Doucet and A. Johansen, “A tutorial on particle filtering and smooth-

ing: Fifteen years later,” Handbook of Nonlinear Filtering, pp. 656-704,

2009.

[6] C. Baker, The numerical treatment of integral equations.
press Oxford, 1977, vol. 13.

[7]1 B. Flannery, W. Press, S. Teukolsky, and W. Vetterling, “Numerical
recipes in c,” Press Syndicate of the University of Cambridge, New York,
1992.

[8] P. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for
the decomposition of matrices,” Appl. Comput. Harmon. Anal., 2010.

[9] S. Avidan, D. Levi, A. Bar-Hillel, and S. Oron, “Locally orderless
tracking,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 1EEE, 2012, pp. 1940-1947.

2

—

3

—

[5

—_

Clarendon

243

