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Abstract—We consider the recovery of a finite stream of
Dirac pulses at nonuniform locations, from noisy lowpass-filtered
samples. We show that maximum-likelihood estimation of the
unknown parameters amounts to solve a difficult, even believed
NP-hard, matrix problem of structured low rank approximation.
We propose a new heuristic iterative optimization algorithm to
solve it. Although it comes, in absence of convexity, with no
convergence proof, it converges in practice to a local solution, and
even to the global solution of the problem, when the noise level
is not too high. Thus, our method improves upon the classical
Cadzow denoising method, for same implementation ease and
speed.

I. INTRODUCTION AND PROBLEM FORMULATION

Reconstruction of signals lying in linear spaces, including

bandlimited signals and splines, has long been the dominant

paradigm in sampling theory, rooted in Shannon’s work. Re-

cently, analog reconstruction from discrete samples has been

enlarged to a broader class of signals, with so-called finite

rate of innovation, i.e. ruled by parsimonious models [1]–[3].

This theory predates and parallels the emerging framework of

sparse recovery and compressed sensing [4]. The most studied

problem in this context, on which we focus in this paper, is the

recovery of a finite stream of Dirac pulses, a.k.a. a spike train,

from uniform, noisy, lowpass-filtered samples [1], [5]–[8].

More precisely, the sought-after unknown signal s consists

of K Dirac pulses in the finite interval [0, τ [, where the real

τ > 0 and the integer K ≥ 1 are known; that is

s(t) =

K∑

k=1

akδ(t− tk), ∀t ∈ [0, τ [, (1)

where δ(t) is the Dirac mass distribution, {tk}
K
k=1 are the

unknown distinct locations in [0, τ [, and {ak}Kk=1 are the

unknown real nonzero amplitudes. The goal is to obtain esti-

mates of these 2K values, which forms a deterministic (non-

Bayesian) parametric estimation problem. The available data

are, classically, linear uniform noisy measurements {vn}
N−1
n=0

on s, of the form

vn =

∫ τ

0

s(t)ϕ
(nτ
N

− t
)
dt+ εn (2)

=

K∑

k=1

akϕ
(nτ
N

− tk

)
+ εn, ∀n = 0, . . . , N − 1, (3)

where ϕ(t) is the sampling function and the εn ∼ N (0, σ2) are

independent random realizations of Gaussian noise. Note that

other noise models could be considered as well, by changing

the cost function in eqns. (5), (7), (9) below.

The questions of the choice of the function ϕ and of the

number N of measurements allowing perfect reconstruction,

in absence of noise, has been addressed in the literature [6],

[7], [9]. In a nutshell, the condition N ≥ 2K + 1, which

we hereafter assume to be true, is necessary and sufficient,

provided that ϕ satisfies some constraints in Fourier domain.

Additionally, we assume, without loss of generality and only

to simplify the notations, that N is odd, of the form N =
2M+1. Since our emphasis here is on appropriately handling

the presence of noise and not on being the most general, we

adopt the simplest choice of the Dirichlet sampling function

[6], which amounts to periodizing the signal s on the real line

before sampling it with the sinc kernel:

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R. (4)

The extension of the setting to the reconstruction of pulses

with real shape, instead of the ideal Dirac distribution, is of

obvious practical interest in ultrawideband communications

[2] or to detect impulsive signals in biomedical applications

[6]. This generalization, or equivalently the choice of another

sampling function ϕ, can be done without difficulty, as shown

in [6], and will not be addressed here.

The paper is organized as follows. In Sect. II, we formulate

the maximum likelihood estimation problem and in Sect. III,

we show that it amounts to a low rank matrix approximation

problem. The new algorithm to solve it is presented in Sect. IV.

II. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

A natural approach to solve parametric estimation problems

is maximum likelihood (ML) estimation; it consists in select-

ing the model which is the most likely to explain the observed

noisy data. In our case, as we have assumed Gaussian noise,

this corresponds to solving the nonlinear least-squares problem

[10]:

minimize
{t′

k
}K

k=1∈ [0, τ [K

{a′

k
}K

k=1∈R
K

N−1∑

n=0

∣∣∣∣∣vn −
K∑

k=1

a′kϕ
(nτ
N

− t′k

)∣∣∣∣∣

2

. (5)

Now, applying the discrete Fourier transform to the vector of

samples {vn}
N−1
n=0 yields the Fourier coefficients defined by
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v̂m =
∑N−1

n=0 vne
−j2πmn/N , ∀m = −M, . . . ,M. We define

the Fourier coefficients {ε̂m}Mm=−M similarly. Then, it is easy

to show that

v̂m =

K∑

k=1

ake
−j2πmtk/τ + ε̂m, ∀m = −M, . . . ,M. (6)

Since the inverse discrete Fourier transform is unitary, up to

a constant, the problem (5) can be rewritten as [10]:

minimize
{t′

k
}K

k=1∈ [0, τ [K

{a′

k
}K

k=1∈R
K

M∑

m=−M

∣∣∣∣∣v̂m −
K∑

k=1

a′ke
−j2πmt′

k
/τ

∣∣∣∣∣

2

. (7)

Thus, (7) takes the form of a spectral estimation problem,

which consists in retrieving the parameters of a sum of

complex exponentials from noisy samples [11]. However,

solving (7) is very difficult task, as the function to minimize is

oscillating, with many local minima [12]. Numerous methods

have been proposed to find a local minimum of the cost

function in (7). They mostly proceed by iteratively refining

an initial estimate of the solution, which has to be already of

good quality. Also, when N ≫ K and the locations tk are not

too close to each other, classical spectral estimation techniques

like MUSIC and ESPRIT can be used; they are fast but

statistically suboptimal. The main advantage of the proposed

approach is that it gets rid of such limitations, without any

simplifying assumption.

III. PRONY’S ANNIHILATION PROPERTY:

REFORMULATION AS MATRIX APPROXIMATION PROBLEM

Let us assume temporarily that there is no noise, i.e.

ε̂m = 0 in (6). Then, the sequence of Fourier coefficients

{v̂m}Mm=−M can be annihilated, a known property which dates

back to Prony’s work in the eighteenth century [13]. That

is, its convolution with the sequence {hk}Kk=0 is identically

zero:
∑K

k=0 hkv̂m−k = 0, ∀m = −M + K, . . . ,M, where

the annihilating filter h is defined, up to a constant, by∑K
k=0 hkz

k =
∏K

k=1(z − ej2πtk/τ ). In matrix form, the

annihilation property is



v̂−M+K · · · v̂−M

...
. . .

...
...

. . .
...

v̂M · · · v̂M−K




︸ ︷︷ ︸
TK




h0

...

hK


 =




0
...

0


 . (8)

Let us choose an integer P in K, . . . ,M and define the

Toeplitz—i.e. with constant values along its diagonals—matrix

TP , of size N −P ×P +1, obtained by arranging the values

{v̂m}Mm=−M in its first row and column; TK is depicted in

(8). Then, the existence of an annihilating filter of size K +1
for the sequence {v̂m}Mm=−M is completely equivalent to the

property that TP has rank at most K .

Hence, turning back to the case when noise is present in

the data, we can rewrite (7) as the following structured low

rank approximation (SLRA) matrix problem:

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP ‖
2
w

s. t. T
′ is Toeplitz and rank(T′) ≤ K, (9)

where the weighted Frobenius norm of a matrix A = {ai,j} ∈
CN−P×P+1 is defined by ‖A‖2w =

∑N−P
i=1

∑P+1
j=1 wi,j |ai,j |2

and wi,j is the inverse of the size of the diagonal going through

the position (i, j), see formula in [14, eq. (16)].

After the SLRA problem (9) has been solved, the procedure

to recover the estimates of the parameters is the following [1].

First, reshape the obtained Toeplitz matrix T̃P to a Toeplitz

matrix T̃K of size N − K × K + 1. Second, compute the

right singular vector h̃ = {h̃k}Kk=0 of T̃K , corresponding to

the singular value 0. Third, compute the roots {z̃k}Kk=1 of the

polynomial
∑K

k=0 h̃kz
k; the estimates {t̃k}Kk=1 of the loca-

tions are given by t̃k = τ
2π arg[0,2π[(z̃k). Fourth, the estimates

{ãk}Kk=1 of the amplitudes are obtained by solving the linear

system Ũ
H
Ũã = Ũ

H
v̂, where v̂ = [v̂−M · · · v̂M ]T, ·H

denotes the Hermitian transpose, and

Ũ =




ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ


 . (10)

We note that this procedure yields the ML estimates solution

to (7), only if the roots {z̃k}Kk=1 are all on the complex unit

circle. This is the case, by centro-Hermitian symmetry of the

matrices, except if the noise level is too high; in this case, two

roots could merge and then split in a pair (z̃k, z̃k′ = 1/z̃∗k) on

both sides of the unit circle, yielding t̃k = t̃k′ .

Thus, the proposed process consists in denoising the matrix

TP , or equivalently the measurements {vn}
N−1
n=0 , by finding

the closest data consistent with the model’s structure, from

which the parameters are estimated by Prony’s method. In

absence of noise, the parameters are perfectly recovered.

However, the SLRA problem (9) at the heart of the procedure,

which consists in projecting a matrix on a nonconvex manifold,

is believed to be NP-hard [15]. Yet, the main advantage

of the SLRA formulation, compared to (7), is that there is

no initialization problem: an iterative algorithm to solve (9)

proceeds directly, with the noisy matrix TP as initial estimate

of the solution T̃P . Moreover, for a low noise level, an

algorithm converging to a local solution will actually find the

global solution T̃P , as we observe in practice.

We now tackle the state-of-the-art to solve SLRA problems,

which have a wide range of applications [15]. A few algo-

rithms, able to find a local solution of the SLRA problem (9),

have been proposed in the community of numerical algebra

[16]–[18]. For instance, the iterative approach in [16] is based

on a BFGS quasi-Newton solver. Besides the difficulty of

implementation, the algorithm is very costly, as it requires

computing many singular value decompositions (SVD) at each

iteration. To our knowledge, the only publicly available soft-

ware package for SLRA is the one currently in development

by Ivan Markovsky [19]. However, it only handles real-valued,
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Fig. 1. The signal to estimate from N = 11 noisy measurements, consists in K = 2 Dirac pulses. The true parameters are (t1, t2) = (0.42, 0.52) and
(a1, a2) = (1, 1), with τ = 1 and P = M = 5. (a) In black, the true pulses. In blue and red, the locations and amplitudes reconstructed by Cadzow denoising
and the proposed algorithm, respectively, for 500 different noise realizations. The signal-to-noise-ratio (SNR) was 15dB and the computation time for every
reconstruction, with 50 iterations, was 14ms. The proposed method yields lower errors, with a points cloud slightly less dispersed. (b) Plot in log-log scale of
the mean squared periodic error (MSPE) on the locations min

(

(t̃1 − t1)2τ + (t̃2 − t2)2τ , (t̃1 − t2)2τ + (t̃2 − t1)2τ
)

, where (x)τ =
(

(x+ τ

2
) mod τ

)

−

τ

2
,

averaged over 10,000 noise realizations for every SNR value. An upper bound of the error is given by the naive estimator, which sets the locations randomly
and uniformly in [0, τ [.

and not complex-valued, matrices. We note that replacing in

the problem the rank by its convex surrogate, the nuclear norm,

does not perform well in our setting, where two close pulses

yield highly coherent measurements [20]. Thus, practitioners

rely on a popular heuristic method, called Cadzow denoising

[21], which is used in [1], [6] for the recovery of Dirac

pulses. This algorithm consists in denoising the matrix TP by

alternating projections: at each iteration, the matrix is replaced

by its closest, in Frobenius norm, matrix of rank at most

K , and then the obtained matrix is replaced by its closest

Toeplitz matrix. Although Cadzow denoising seems to always

converge in practice to a Toeplitz matrix of rank at most K ,

there exists no global proof of convergence to date, contrary

to a common belief [22]. Anyways, the obtained matrix is not

a local minimizer of the cost function ‖ · −TP ‖2w [12], [16].

In the next section, we propose a new algorithm to compute

a local solution of the SLRA problem (9), thus improving

theoretically upon Cadzow denoising.

IV. A NEW OPTIMIZATION METHOD FOR SLRA

Let us consider the generic optimization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩ Ω2, (11)

where H is a real Hilbert space of finite dimension, Ω1 and Ω2

are two closed subsets of H, and F : H → R is a differentiable

function with Lipschitz-continuous gradient; that is, there

exists some β > 0 such that ‖∇F (x′)−∇F (x)‖ ≤ β‖x−x′‖,

∀x, x′ ∈ H. Recently [23], the first author proposed a new

algorithm to solve (11):

Optimization algorithm. Choose the parameters µ > 0,

γ ∈ ]0, 1[, and the initial elements x(0), s(0) ∈ H. Then iterate,

for every i ≥ 0,∣∣∣∣
x(i+1) = PΩ1

(
s(i) + γ(x(i) − s(i))− µ∇F (x(i))

)

s(i+1) = s(i) − x(i+1) + PΩ2
(2x(i+1) − s(i))

,

where PΩ denotes the closest-point projection onto Ω ⊂ H.

It has been proved in [23] that if Ω1 and Ω2 are convex and

2γ > βµ, the sequence (x(i))i∈N converges to some element

x̃ solution to the problem (11).

In absence of convexity, this result does not apply, so that

we will use the method as a heuristic, without guarantee of

convergence. The SLRA problem (9) can be recast as an

instance of (11) as follows: H = CN−P×P+1 is the real

Hilbert space of complex-valued matrices of size N−P×P+1
with centro-Hermitian symmetry, endowed with Frobenius

inner product 〈X,X′〉 =
∑

i,j xi,jx
′∗
i,j ; Ω1 is the closed

nonconvex subset of H of matrices with rank at most K; Ω2 is

the linear subspace of H of Toeplitz matrices. The operations

involved in the algorithm are the following:

• PΩ1
corresponds to SVD truncation, according to the

Schmidt-Eckart-Young theorem: if a matrix X has SVD

X = LΣR
H, then PΩ1

(X) is obtained by setting to zero

the singular values in Σ, except the K largest.

• The “Toeplitzation” operation PΩ2
simply consists in

averaging along the diagonals of the matrix.

• The cost function is F (X) = 1
2‖X − TP ‖2w, so that

∇F (X) = W ◦ (X − TP ), where ◦ is the entrywise

(Hadamard) product and the matrix W has entries {wi,j}.
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Fig. 2. The signal consists of K = 6 Dirac pulses. We have N = 25
noisy measurements with SNR=25dB. In black: true pulses. In blue and red:
reconstructed positions and amplitudes of the pulses with Cadzow denoising
and the proposed algorithm, respectively. The computation time, with 50
iterations, was 19ms in both cases.

The Lipschitz constant of ∇F is β = max({wi,j}) = 1.

We observed empirically that the proposed algorithm always

converges, for an appropriate choice of µ and γ. Moreover, the

matrix obtained at convergence is always Toeplitz, of rank at

most K , and a local solution to (9); see more details in [14].

We show in Fig. 1 a comparison with Cadzow denoising

for the recovery of K = 2 Dirac pulses from N = 11
measurements. We observe that the estimation error on the

pulses’ locations is about 10% lower in average with our

method. We recognize that this improvement is small for the

simple setting considered here, with ideal Dirac pulses and a

sinc sampling kernel. Our ongoing work is to investigate more

general scenarios, with pulses having real shape and noise

which is not white and Gaussian. We expect the improvement

of our method over Cadzow denoising to be more significant in

such cases. Yet, we emphasize that both methods have essen-

tially the same complexity and convergence speed, dominated

by one SVD per iteration. Another example is given in Fig.2

and experiments with larger size are shown in the extended

version of this paper [14].

V. CONCLUSION

We proposed a new heuristic optimization algorithm to solve

structured low rank approximation problems. For the recovery

of Dirac pulses, this efficient matrix denoising procedure, com-

bined with Prony’s extraction method, yields the maximum-

likelihood parameter estimates, up to some threshold SNR.

Many theoretical questions related to the performances of the

approach are open and currently investigated by the authors.

Especially, stability guarantees similar to the ones recently

developed for a convex relaxation of the problem [8], [24],

are sought after. A Matlab implementation of the proposed

method is available on the webpage of the first author.
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