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ABSTRACT 
An operation planning system, integrating dynamic 
environmental forecasts and satellite Automatic 
Identification System sensor performance surfaces, to 
improve maritime traffic situation awareness is proposed 
and tested. Multi-objective evolutionary algorithms are used 
to optimize a network of monitoring assets with respect to a 
combined surveillance and piracy activity risk metric, the 
network area coverage and the mission cost, under given 
spatial and kinematic constraints. Pareto efficient solutions 
are provided, each representing a tradeoff among mission 
objectives. Tests in a counter piracy operational scenario 
with real-world hindcast data and sensor performance 
surfaces show the effectiveness of the methodology in 
improving surveillance efficiency. 
 

Index Terms—environmental forecasts, sensor 
performance surfaces, multi-objective optimization, sensor 
networks, path planning, counter piracy. 
 

1. INTRODUCTION 
Piracy on the high seas is a problem of world-wide 

concern. According to the International Chamber of 
Commerce (ICC) International Maritime Bureau’s (IMB) 
global piracy report attacks in East and West Africa 
accounted for the majority of world attacks in 2011, 
signaling a rising trend. Of the 439 attacks reported to the 
IMB in 2011, 275 attacks took place off Somalia on the east 
coast and in the Gulf of Guinea on the west coast of Africa 
[1]. In response to the piracy problem, the U.S. Naval 
Oceanographic Office (NAVOCEANO) at Stennis Space 
Center has been providing a forecasting product called the 
Piracy Performance Surface (PPS). The PPS uses forecasts 
of winds and seas to map the locations that are most 
conducive to pirate activity, and incorporates information on 
confirmed pirate activity in the form of an attack, an 
attempted attack, or suspicious activity. The existing 
product was developed rapidly to provide support to the 
operators. NAVOCEANO is working to improve the model 
of the relationship between meteorological and 
oceanographic (METOC) and pirate activity, and to improve 
the way the pirate threat is updated when confirmed piracy 
activity is observed [2]. In [3] an algorithmic procedure is 
proposed to allocate interdiction and surveillance assets so 
as to minimize the likelihood of a successful pirate attack 

over a fixed planning horizon. This procedure is basically a 
tool for human planners that can be mapped closely to the 
decision support layer of the Battlespace on Demand 
(BonD) framework [4]. 

In the present work as a response to the piracy threat, a 
methodology is proposed that can integrate intelligence data, 
commercial shipping routes and METOC information to 
predict regions where pirates may be present and may strike 
next and plan monitoring asset trajectories according to 
specific requirements for vessel traffic monitoring. The 
monitoring assets are typically ships, airplanes, satellites 
and autonomous vehicles equipped with a diversity of 
sensors (e.g. radars, infrared, etc.). Some of these assets 
have predefined dynamics, for instance a satellite sensor has 
a fixed orbit and can only provide useful information in 
some given time period during the day. Other assets, 
instead, may be scheduled in order to fill the blanking 
region/time period with gaps in surveillance coverage. 
These areas of interest are the regions where a pirate group 
may be operative, i.e. the most dangerous for a commercial 
vessel. A related risk map is computed, mostly based on the 
correlation between METOC data and pirate attacks, using 
machine learning techniques [5] applied to a historical data 
base of pirate attacks. The costs of the monitoring activity 
must also be taken into account, and potentially the trade-off 
with the minimum number of assets that should be 
employed to achieve the security requirements. 

Specifically, this paper proposes to optimize the 
surveillance assets over a fixed planning horizon in order to 
obtain the best coverage of the vessel traffic regions. The 
procedure provides the jointly optimal path planning of the 
monitoring asset network given specific operational 
constraints, dynamic environmental forecasts, satellite 
Automatic Identification System (AIS) sensor performance 
surfaces and the mission cost of each asset. Multi-objective 
(MO) evolutionary algorithms are used to optimize asset 
way points with respect to three objectives: i) a surveillance 
risk metric, ii) the asset network area coverage and iii) the 
total mission cost. Pareto efficient solutions are provided, 
each representing a tradeoff among mission objectives. 

The paper is organized as follows. Section 2 describes 
the planning system and section 3 poses and formalizes the 
multi-objective optimization problem. Section 4 is devoted 
to describe and analyze a maritime scenario. Finally, section 
5 draws conclusions. 
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2. SYSTEM DESCRIPTION 
The problem addressed in this work consists in 

optimizing the deployment of N controllable moving assets, 
equipped with on board surveillance sensors. The network 
of assets operates in a given region of interest (ROI), in 
order to improve the vessel traffic surveillance in those 
areas of the ROI where there is a lack of information (e.g. 
lack of satellite AIS coverage) and at the same time 
favorable METOC conditions for a pirate activity. In this 
formulation, the purpose of the assets is to improve 
coverage of vessels that from which no AIS is received 
rather than detect pirate groups or suspicious vessels. 

The optimization is carried out by minimizing a risk 
metric with a series of conflicting objectives including asset 
mission costs and network spatial coverage. The problem 
has several constraints such as asset kinematic, operational 
limitations, sensor performance and spatial constraints. The 
risk metric is defined based on a data fusion strategy, which 
takes into account all of the information from the sensors 
and the METOC information related to the presence of 
pirates. METOC variables include wind speed, significant 
wave height and wave peak period, which are predicted by a 
forecast system typically over a 3 day time horizon every 
three hours. The network is assumed to be heterogeneous, 
and can include radar, electro-optical and infrared sensors 
on board ships, airplanes, satellites and autonomous 
vehicles. Given the asset initial states (position, velocity and 
heading), and the constraints, the optimization procedure 
provides the optimal number of assets and optimal set of 
way points for the asset navigation. The surveillance 
mission time horizon is constrained by the operational limits 
of each asset (i.e. mission endurance) as well as by the 
forecast period of the METOC prediction system. 
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Figure 1: Schematic of the planning system. 
 

Figure 1 shows a scheme of the planning system. The 
asset trajectory simulator provides the trajectories of the 
selected assets given the waypoints and the initial states. 
Sensor performance and risk of pirate presence are 
integrated along the trajectories in order to evaluate the 
overall performance of the surveillance network over the 
whole mission period. A multi-objective genetic algorithm 
is used to optimize the deployment of the network. The 
following subsections detail the main blocks of the proposed 
planning system. 
 
 

2.1. METOC pirate risk maps 
METOC data are used in routinely counter piracy 

operations to provide risk maps of preferred environmental 
conditions for pirates to operate at sea [2]. In [5] the 
correlation between METOC data and pirate attacks is 
exploited using machine learning techniques applied to a 
historical data base of pirate attacks. The study is conducted 
by considering the publicly available data by the 
International Maritime Organization and includes all the 
monthly reports on piracy and armed robbery against ships 
from years 2005 until 2010 [6]. The weather and sea 
conditions, taken from the National Oceanic and 
Atmospheric Administration (NOAA) public archive, are 
used. This data set consists of a worldwide grid of METOC 
hindcasts generated using the WAVEWATCH III global 
model [7]. The piracy risk in a spatial dell c is defined as the 
probability of the attack event {0,1}cA ∈  given the METOC 
conditions cm  in c: 

{ } ( )
( ),

1 P{ 1}
P 1 c c c

A c c c
c

p A A
P A

p
= =

= = =
m

m
m

. (1) 

The METOC variable vector includes the significant 
wave height, the peak wave period and the wind speed.  

 

  
         a)                   b) 

Figure 2: ,A cP  risk map of pirate presence from 
WAVEWATCH III global model hindcasts. Forecast base 
time: 10 Oct 2010, 00:00:00Z. Forecasts at a) +00h, b) +72h 
show increasing risk in the ROI. 
 
Figure 2 depicts an example of a risk map in the Indian 
Ocean. Panel b) represents the risk after 72h w.r.t. panel a), 
showing an increasing trend of the risk in a period of 72h. 
The map was obtained by using a multivariate Gaussian 
mixture model to fit the likelihood ( )1c cp A =m , 
considering the other terms in (1) uniform. The probability 
density function ( )cp m  and the prior probability P{ 1}cA =  
can be estimated by using the same training set of attack 
positions-METOC vector pairs used for the likelihood. 
 
2.2. Satellite AIS performance surfaces 

Vessels exceeding a certain gross tonnage are equipped 
with AIS transponders for position-reporting, as established 
by the Safety of Life at Sea (SOLAS) convention. Ships 
repeatedly broadcast their name, position and other details 
for automatic display on nearby ships. While this allows 
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ships to be aware and keep track of other ships in their 
immediate vicinity, coastal states are also able to receive, 
plot and log the data by means of base stations, along the 
coast. However, terrestrial AIS is limited in range and 
therefore cannot detect ships at distances beyond the range 
of normal VHF communication from coastlines. Operating 
range from shore is expected to depend on the capability and 
height of the installed base stations. Satellite AIS was 
developed to overcome this issue. However, AIS messages 
are organized in time slots and only one vessel is nominally 
permitted to transmit its AIS message in a given time slot 
within a Self Organized Time Division Multiplex Access 
(SOTDMA) region. Since more than one SOTDMA region 
usually falls into the satellite field of view, different AIS 
messages from different vessels can reach the sensor at the 
same time, leading to a collision and consequent message 
loss, namely, those vessels aren’t detected [8]. The satellite 
AIS performance is then defined by the target detection 
probability [8], indicated for the i-th sensor and for the 
elementary cell c by , ,

AIS
D c iP . This probability has been 

estimated for each cell c covered by the satellite field of 
view (FOV) using a Bayesian inference approach [8]. It is 
null for those cells not covered by the FOV. 
 
2.3 Sensor trajectory simulator 

The asset trajectory between two waypoints is simulated 
by modeling the asset horizontal position by a simple 
discrete first order kinematic equation with constant cruise 
speed in Cartesian coordinates. Additive Gaussian 
acceleration noise with given covariance matrix is used to 
model random disturbances generated, for example, by 
environmental conditions. A waypoint is acquired when the 
distance between the position of the asset and the way point 
is less than a given threshold (calculated by considering the 
speed of the asset and the sampling interval). A simple 
control system is included for simulating auto-piloting that 
is based on heading correction calculated from simulated 
noisy position measurements. Heading from last way point 
and range to the next are constrained within given intervals 
in order to guarantee the feasibility of asset maneuvers. 
 
2.4 The surveillance risk metric prediction 

The surveillance sensor network is devoted to monitor 
the vessel traffic. This task can be modeled with a binary 
hypothesis test. The null hypothesis 0H  holds if a generic 
target is not present in cell c while the alternative hypothesis 

1H  holds if a target is present. The surveillance risk metric 
provides a measure of the risk that a vessel is not detected in 
regions where pirates can operate. Considering the cell c, a 
warning event Wc can be defined as the event of deciding for 
the absence of a vessel (i.e. 0H ) when there is a pirate 
group operating, conditioned to the presence of the vessel 
target: 

( ) { }, 0 1
ˆ , 1W c c c cP P W P H H A H= = = ,  (2) 

where ˆ
cH  is the binary testing decision. 

The testing decision is based on the information fusion of 
the local sensor decisions. Given the probability of detection 
of the network (assets+satellite AIS) ,D cP , and the 
probability of favorable conditions for pirate activity ,A cP , 
recall equation (1), the probability of W can be obtained by: 

( ), , ,1W c D c A cP P P= − .    (3) 

The network detection probability ,D cP  depends on where 
the network assets are deployed and on the performance of 
the sensors carried on board.  
The surveillance risk metric for a given discrete time step k 
is defined as a Bayesian risk ,W kf  by averaging equation (3) 
over all the spatial cells: 

( ), , , , , , ,
1 1

1 1 1
c cN N

W k W c k D c k A c k
c cc c

f P P P
N N= =

= = −∑ ∑ , (4) 

where cN  is the number of cells. The total risk metric Wf  is 
then calculated by averaging equation (4) over the entire 
duration of the asset network mission. 
 

3 ASSET NETWORK OPTIMIZATION 
The goal of the multi-objective planning system is to 

minimize the surveillance risk metric and the mission costs, 
while maximizing the asset network area coverage. The 
multi-objective optimal deployment of the asset network can 
be formalized as follows. The decision variable vector iu  of 
the optimization problem for each asset i=1,…,N is 
composed of control actions to move the asset from the last 
reached waypoint to the next. These include range and 
heading controls: 

,0 ,0 ,1 ,1 , 1 , 1, , , , , ,
WP WP

T

i i i i i i N i Nr r rθ θ θ− − =  u  ,  (5) 

where WPN  is the maximum number of waypoints; ,i w rr ∈Ω  
and ,i w θθ ∈Ω  are the range and the heading to waypoint 
w+1 for the i-th asset, respectively; rΩ  and θΩ  are the 
range and heading feasible regions. The controls ,0ir  and 

,0iθ  are applied at the asset starting position 

,0 ,0 ,0,
T

i i ix y =  x  to reach the first waypoint. The asset is 
supposed to come from a given direction with a given cruise 
speed. The network action control vector u  is composed of 
the action controls of all assets: 

1 2, , ,
TT T T

N =  u u u u ,    (6) 
where N  is the total number of assets. An additional binary 
decision variable vector can be included if the number of 
deployed assets and the number of waypoints for each asset 
have to be optimized: 

1 2, , , ,
TT T T T

N =  d a w w w ,   (7) 

where [ ]1 2, , T
Na a a=a  , with ia  equal to 1 in case the i-th 

asset is included in the network, 0 otherwise, and 
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,1 ,2 ,, ,
WP

T

i i i i Nw w w =  w  , with ,i jw  equal to 1 if the j-th 
waypoint has to be included in the waypoint list of asset i, 0 
otherwise. 

The optimization is directly performed in a multi-
dimensional space, by exploiting the concept of Pareto 
dominance [9], thus avoiding specifying weights among 
objectives (which is almost a subjective practice) as in an 
optimization scheme with a weighted sum of the objective 
functions. Moreover, there is no need to know derivatives of 
these functions with respect to the unknown vectors u  and 
d  given that a genetic evolutionary technique is used. The 
optimizer provides a full spectrum of optimal solutions 
(representing different tradeoffs among objectives) close to 
the so called Pareto optimal front (also known as Pareto 
efficient frontier) that is a hyper-surface in the multi-
objective space. If a non-dominated solution is moved along 
the front to improve one objective, the remaining ones are 
inevitably subjected to deterioration. Such a set of tradeoffs 
can be analyzed by the mission planner for making his final 
decision taking into account his subjective preferences and 
qualitative evaluations [10]. 

Assuming the optimizer solves minimization problems, 
the objective vector function (also referred to as fitness 
function) used in this work includes the surveillance risk 
metric Wf , the opposite of the asset network area coverage 

ACf  and the total mission cost MCf : 

( ) [ ], ; , , T
W AC MCf f fΘ =f u d ,   (8) 

where Θ  is the vector of sensor performance parameters. 
The solution of the optimization problem consists in finding 
the set *P  of non-dominated solutions for u  and d  in the 
feasible region constrained by the asset kinematic, the asset 
operational limits and additional spatial constraints such as 
interdicted areas: 

{ } ( )*

,
, arg opt , ;ParetoP = = Θ  

u d
u d f u d ,  (9) 

where ( )opt ⋅  is the optimum in the Pareto sense [9]. The 
optimal solutions represent a cost effective tradeoff between 
the tendency of concentrating assets in high risk areas, 
which can be limited to a small portion of the whole ROI, 
versus larger area coverage in the ROI. 
 

4. RESULTS 
The proposed optimization criteria has been tested on a 

maritime scenario making use of real METOC hindcast data 
and satellite AIS performance surfaces. The ROI is in the 
Indian Ocean facing the Horn of Africa. Simulated assets 
include frigate class ships equipped with a surface radar 
having a maximum range of 100 km, and constant detection 
probability PD=0.8 and constant false alarm probability 
PFA=0.001, with cruise speed of 20 knots (10 m/s). The 
feasible regions for the control actions are [ ]150,350rΩ =  

km and 80, 80θ θ θ Ω = − +   deg, where θ  is the ship 

direction of arrival to the last reached waypoint. A linear 
mission cost with the travelled distance is assumed, with 
cost per unit length and per asset equal to 10-6. The total 
number of assets is N=6 and the number of waypoints per 
asset is NWP=7. All assets and waypoints are included into a 
solution, i.e. the components of d  are constant and equal to 
one. The scenario starts on 10 October 2010 at base time 
00:00:00Z. Three days of significant wave height, peak 
wave period and wind speed hindcasts from the 
WAVEWATCH III global model, with 110x110 km spatial 
resolution and 3 hours temporal resolution, are used to 
produce grids of piracy risk. Satellite AIS performance is 
predicted on the same grid every 10 min to capture the 
dynamic of the satellite orbits. 

The improved 1Archive-based Micro Genetic Algorithm 
(AMGA2) [11] has been used to optimize the asset network 
planning as it improves upon several concepts from existing 
multi-objective optimization algorithms. In this study, a 
parallel version of AMGA2 for MATLAB has been 
implemented that significantly speeds up the optimization 
step. The maximum leading time to provide a plan is given 
by the temporal resolution of the METOC forecast model. 

Figure 3 shows the results of the mission planner for the 
considered scenario. In particular, fig. 3-a) shows an 
approximated Pareto front which is almost stable after 
30000 iterations of the AMGA2 optimizer. A solution in 
red, with total mission duration of 35 hours, is highlighted 
on the front (it is supposed that the user preference is for 
low Wf  solutions). Figure 3-b) shows the temporal graph of 
the surveillance risk metric improvement factor (IF) that is 
the ratio between the risk using the assets and the risk using 
only the AIS, averaged over the ROI. The IF, except for the 
first 5 hours of the mission, has a growing linear trend with 
some fluctuations due to the intermittence of the AIS 
coverage. Figure 3-c) shows the percentage of the asset 
network area coverage with respect to the total area of the 
ROI. The fraction of the covered area ranges between 9.5% 
and 10.5% within the mission duration period. Figures 3-d) 
and 3-e) depict the piracy risk map and the satellite AIS 
coverage 29 hours since the base time, with overlaid 
planned trajectories. The initial position of the assets is 
highlighted with small green circles. The asset sensor 
coverage at 29 hours since the base time is also depicted 
showing the ability of the planning system to distribute 
assets by prioritizing regions with high risk and lower AIS 
coverage, and maximizing at the same time the area 
coverage.  

In general, the simulations show that the provided 
solutions improve the vessel traffic situational awareness in 
those areas where the piracy risk is higher, supplementing 
low satellite AIS coverage.  

                                                 
1 AMGA2 has been developed at Clemson Research in Engineering 

Design and Optimization Laboratory, Department of Mechanical 
Engineering, Clemson University and is the property of its developers. (C) 
Santosh Tiwari and Georges Fadel, Clemson University, 2009. 
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Moreover, the time consuming optimization procedure, 
based on evolutionary multi-objective algorithms, provides 
solutions within the given leading time constraints. 
 

5. CONCLUSIONS 
This work proposes a system to allocate surveillance 

resources in areas of high piracy risk when the satellite AIS 
coverage is low, resulting in an improved maritime traffic 
situational awareness. The system is based on multi-
objective optimization algorithm providing solutions that are 
on the so called Pareto optimal front. The solutions are a 
tradeoff among three objectives: surveillance risk, area 
coverage and mission cost. The methodology has been 
applied to a realistic scenario in the Indian Ocean using real-
world data. In general, the tests performed have been shown 
an improvement in terms of surveillance risk taking into 
account the related asset costs and the sensor coverage. The 
system has a highly flexible architecture that can be 
expanded to account for different application dependent risk 
and performance metrics. Future improvements will include 
additional piracy risk factors such as intelligence and vessel 
traffic density information as well as performance surfaces 
of the asset sensors which are dependent on METOC 
conditions over the ROI. 
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