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ABSTRACT
We consider the problem of distributed Bayesian hypothesis
testing on a set of time invariant hypotheses in a cognitive
system of cooperative agents. Each agent in the system
obtains one set of private observations and then at every time
slot two randomly selected agents repeatedly exchange their
decisions and update their beliefs. We propose a method that
allows the agents to reach an optimal local consensus by just
exchanging decisions. It can be shown that with this strategy,
all agents in the system can achieve a consensus in decision,
which is also the global optimal decision held by a fictitious
fusion center. We provide performance and convergence
analysis of the proposed method as well as simulation results
that demonstrate its asymptotical properties.

Index Terms— Cognitive system, Bayesian consensus,
distributed hypothesis testing, cooperative agents

1. INTRODUCTION

In this paper we address the problem of reaching a Bayesian
consensus in a cognitive system modeled by a set of spatially
distributed agents. The agents are linked through a connected
graph where any two neighboring agents can exchange their
decisions without any noise in communication. The agents
receive private signals generated according to one of two or
more possible models (hypotheses), all known to the agents.
After receiving the private observations, all agents repeatedly
make decisions about the hypotheses, learn from the decisions
of their neighbors, and adapt their beliefs until all agents reach
consensus identical to the optimal global decision.

In [1], it was maintained that an agent with cognitive capacity
should be able to learn from the environment, including the
information from other agents, and adapt its internal states.
An important question was raised: in what way should the
agent learn from environmental information and in what way
should its inner state be adapted? This has been widely
studied in the realm of cognitive radio [2, 3] and cognitive
control [4]. In the studies of cognitive systems where
cognition is achieved in a distributed manner, the learning

This work was supported by NSF under Award CCF-1018323.

and adaptation processes are cooperative. For example, in
[5] and [6], the authors propose cooperative spectrum sensing
methods in cognitive radio.

In this work, we address the problem of Bayesian learning in
cooperative networks [7, 8], where the agents in the network
asymptotically attain the performance of a Bayesian fusion
center by distributed cooperation. We focus on applications
where the information exchanged between agents are just
their decisions on the true state of nature. In [9], we studied
the case of binary hypotheses, whereas in this paper, we
extend our work to multiple hypotheses. More specifically,
we propose a solution based on the idea of making the beliefs
of all the agents converge to an identical decision region
instead of to an identical value. We analyze the performance
of the method theoretically and demonstrate it by simulations.

The paper is organized as follows. In the next section we state
the problem. In Section 3, we present the solution when the
agents choose from two hypotheses, and in Section 4, from
multiple hypotheses. Section 5 provides simulation results,
and Section 6 contains conclusions.

2. PROBLEM STATEMENT

Mathematically, we formulate the problem as follows. We
consider a distributed hypothesis testing problem in a
cognitive system which includes N cooperative agents Ai,
i ∈ NA = {1, 2, ..., N}. The connections among agents are
described by an undirected graph G = (NA, E), where E is
the set of edges of the graph, and where agents Ai and Aj
can directly exchange information if and only if (i, j) ∈ E .
In this paper, we assume that the topology of the network is
time invariant and that the communication between any two
communicating agents is perfect.

In this cognitive system, every agent An has its private
observations zn that may be generated according to one of K
hypotheses, which are denoted by {H1,H2, · · · ,HK}. We
assume that the private observations are generated from the
same hypothesis and that the observations of different agents
are independent. At time slot t = 1, for all n ∈ NA, agent
An can obtain its beliefs on each hypothesis Hk, k ∈ NH =
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{1, 2, ...,K} by using Bayes’ rule, i.e., it can form the vector
of posterior probabilities

πn[1] = [πn,1[1], πn,2[1], ..., πn,K [1]]
>
, (1)

where πn,k[1] = P (Hk|zn). The agents are allowed to
repeatedly make decisions on the state of nature and modify
their private beliefs by using their neighbors’ decisions. At
time slot t ∈ N+, for any n ∈ NA, the An’s belief is denoted
by the vector πn[t] = [πn,1[t], πn,2[t], ..., πn,K [t]]

>, where
πn,k[t] is the An’s belief inHk at time slot t.

Let the reward of any agent An, n ∈ NA be one if
its decision is identical to the true hypothesis, and zero
otherwise; then the An’s expected reward at t is maximized if
it makes decision αn[t] by the following rule:

αn[t] = argk maxπn,k[t]. (2)

We also consider a fictitious fusion center that has access to
the initial beliefs of all the agents in the network, πn,k[1],
∀n ∈ NA and ∀k ∈ NH . These beliefs can be fused
using Bayes’ theorem to form an optimal belief πo =

[πo,1, πo,2, ..., πo,K ]
>, where for each k ∈ NH , πo,k denotes

the posterior probability of Hk. Each element of the optimal
belief is given by [7]

πo,k ∝
N∏
n=1

πn,k[1]. (3)

We assume that the reward of the fictitious fusion center,
too, is one if it chooses the correct hypothesis, and zero,
otherwise. Thus, its expected reward is also maximized if
αo = k given that πo,k is greater than any other element
in πo. Here we assume that ∀n ∈ NA and ∀k ∈ NH , the
beliefs πn,k[1] are continuous random variables, and therefore
the probability that the optimal decision is not unique is
zero. Therefore, in the analysis, we address the case of
unique optimal decisions only. We use the performance of the
fictitious fusion center as a benchmark for the studied system.

According to [7], the result in (3) implies that every Ai’s
decision will be identical to the optimal decision of the
fictitious fusion center if Ai can obtain the average value of
all the agents’ log-beliefs on every hypothesisHk, k ∈ NH ,

l̄ =

[
1

N
ΣNn=1ln,1[1],

1

N
ΣNn=1ln,2[1], · · · , 1

N
ΣNn=1ln,K [1]

]>
,

where ln,i[1] is the log-belief of agent Ai at t = 1.

The problem of achieving average value in distributed manner
can be solved by the average consensus [10] or gossip
algorithms [11] if the agents are allowed to exchange their
log-beliefs. In this paper, however, we study the problem
where the communication between the agents is constrained
to only a few quantized values. We note that neither a

quantized average consensus algorithm nor a quantized gossip
algorithm [12] can guarantee the consensus in decision.

In the following sections, we propose an algorithm by which
all the agents’ decisions converge to the optimal one held
by a fictitious fusion center and where the agents repeatedly
exchange only their decisions, i.e., an algorithm with the
following property:

lim
t→∞

P (αn[t] = αo) = 1, ∀ n ∈ NA. (4)

Before we proceed, we reiterate that our system is cognitive
and is composed of cooperative agents. The behavior of the
agents is modeled by a closed cognitive cycle, where at each
time slot only two agents implement cooperation, as in a
gossip style setting. Namely, we assume that every agentAi is
waken up with probability 1

N , and then the agent selects one
of its neighbors, e.g., Aj with a positive probability Pi,j to
exchange decisions. With the exchanges, these agents update
their log-beliefs until they reach a local consensus in their
decisions. In Fig. 1, we describe pictorially the behavior of
every agent in this cognitive system.

Fig. 1. The model of agent behavior in the cognitive system.

3. THE BINARY HYPOTHESIS CASE

In this section, we introduce the proposed method on the
binary hypothesis testing problem, where NH = {1, 2}. We
propose a gossip-type algorithm where the agents exchange
merely their decisions and yet, the probability that every agent
reaches the optimal consensus in decision converges to one.

Let the log-belief ratio (LBR) of agent An at time slot t be
βn[t] = ln,2[t] − ln,1[t]. The decision is made based on
the LBR of the agent, that is, if the LBR of An is above
a threshold or below it. The idea behind the algorithm is
to get a global optimal consensus by reaching optimal local
consensuses at each time slot. With the same settings as for
the gossip algorithm, at each time slot, a pair of neighboring
agents Ai and Aj is selected with probability (Pij +Pji)/N .
The two selected agents, implement an algorithm referred to
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as the Local Consensus Algorithm (LCA), which allows them
to reach an optimal local consensus after a finite number of
exchanges of their decisions [9].

We define the variables U (m)
n and L(m)

n , which represent the
upper and lower bounds of the LBR βn[t] of An,(n ∈ {i, j}),
at iteration m, respectively.1 We also define the threshold
γ
(m)
n that is used for decision making at iteration m (and time

slot t). During the implementation of the LCA, the bounds
L
(m)
n and U (m)

n and the threshold γ(m)
n are all computed by

An. We formally describe the LCA as follows:

Initialization: For An, n ∈ {i, j}, set γ(1)n = 0, U (0)
n =∞,

L
(0)
n = −∞ and βn[t] = ln,2[t]−ln,1[t]. The following

steps describe the mth iteration.

Step 1 (Intermediate decision exchanges) The agents make
intermediate decisions, δ(m)

n , n ∈ {i, j}, based on their
individual log-beliefs and thresholds, i.e.,

δ(m)
n =

{
2, if βn[t] > γ

(m)
n

1, if βn[t] < γ
(m)
n

. (5)

Then Ai transmits its intermediate decision δ(m)
i to Aj ,

and Aj sends its δ(m)
j to Ai.

Step 2: (Consensus checking) If the agents achieve
consensus, i.e., δ(m)

i = δ
(m)
j , they stop, and they set

their log-beliefs to

ln,1[t+ 1] = ln,1[t] +
γ
(m)
n

2
(6)

ln,2[t+ 1] = ln,2[t]− γ
(m)
n

2
, (7)

and by (2), the agents have a local consensus αn[t +

1] = δ
(m)
n . Otherwise, they proceed to the next step.

Step 3: (Interval updating) The agents update their
intervals Ln and Un according to

(
L(m+1)
n , U (m+1)

n

)
=


(
γ
(m)
n , U

(m)
n

)
, if δ

(m)
n = 2(

L
(m)
n , γ

(m)
n

)
, if δ

(m)
n = 1

.

(8)

Step 4: (Threshold updating) Each agent updates its own
threshold by γ(m+1)

n = f
(
L
(m)
n , U

(m)
n

)
, where the

function f(·, ·) is identical and known to every agent.

Before proceeding with the analysis of the algorithm, we
provide an example.

1Note that in order to avoid a too unwieldy notation, we do not specify
that the bounds are for time slot t. A full notation would be, e.g., U(m)

n [t].

Example 1 Let Ai and Aj be selected at time slot t, and let
the rule for obtaining the threshold γ(m)

n be defined by

γ(m+1)
n =


γ
(m)
n +

(
δ
(m)
n − 3/2

)
∆, if C is true

L
(m)
n + U

(m)
n

2
, otherwise,

(9)

where C stands for the condition L(m)
n = −∞ or U

(m)
n =∞,

and ∆ is a positive real number. Suppose also that βi[t] =
0.412∆ and βj [t] = − 0.207∆. Therefore βi[t] + βj [t] > 0,
and the optimal local consensus is αo[t] = 2. We refer the
reader to a similar example in [9] where we show in more
detail how the agents reach the optimal decision.

In [9], we have shown that under mild conditions, by using
the LCA algorithm all the agents asymptotically reach the
optimal decision of a fictitious fusion center. We formally
state this analytical result with the following theorem:

Theorem 1 Let the initial log-beliefs ln[1] ∈ R2×1, ∀n ∈
NA, be continuous random vectors. With the LCA-based
gossip algorithm the agents achieve the optimal consensus
in probability, i.e., limt→∞ P (α [t] = αo 1) = 1, where
1 ∈ RN×1 is a vector of all ones, for as long as the threshold
update function of the LCA f(·, ·) (Step 4 of the LCA) has the
following two properties:

(P1) γ(m)
i = −γ(m)

j , for any m = 1, 2, 3, · · · ,

(P2) If δ(m)
i 6= δ

(m)
j for any m ∈ {1, 2, 3, · · · ,M}, then

limM→∞ U
(M)
n − L(M)

n = 0, ∀n ∈ {i, j}.

Furthermore, for as long as (P1) and (P2) hold, the LCA can
preserve the mean value of the log-beliefs and guarantee a
local optimal consensus in a finite number of iterations.

Theorem 2 In the execution of the LCA, if (P1) and (P2)
hold, ∀k ∈ NH , the sum of all the log-beliefs on Hk in the
network does not change with t, i.e.,

N∑
n=1

ln,k[t+ 1] =

N∑
n=1

ln,k[t], ∀k ∈ {1, 2}, (10)

and there exists a finite iteration m̃ such that αn[t + 1] =

δ
(m̃)
i = δ

(m̃)
j = δo, ∀n ∈ {i, j}, where

δo =


2, if

βi[t] + βj [t]

2
> 0

1, if
βi[t] + βj [t]

2
< 0

. (11)

According to Theorem 1, since every agent can eliminate one
hypothesis by implementing the LCA, it can be expected that
when K > 2, all agents will also reach the optimal consensus
by repeating the LCAK−1 times. However, in the following
section, we propose a method achieving the same goal with
much less communication.
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4. THE MULTIPLE HYPOTHESIS CASE

Now, we consider the problem when the number of
hypotheses K is greater than two. We propose a gossip-type
algorithm where the agents repeatedly exchange decisions
about their favoring hypotheses. In other words, an agents
sends to its communicating agent the index of the hypothesis
with the largest log-belief. Furthermore, each agent adapts its
beliefs in the two hypotheses chosen by these agents.

Let Ai and Aj be selected at time slot t. They carry out
an extended local consensus algorithm (ELCA), where the
agents repeatedly implement LCA until they reach the local
optimal consensus. In each iteration, the agents make their
temporary decision2 and check whether the local consensus
has been reached. If consensus has not been attained, they
implement the LCA to adapt their temporary log-beliefs and
find out which of the two decisions is better. We also
denote the temporary log-belief by l(m)

n,k , which represents the
temporary log-belief on the kth hypothesis held by agent An
at iteration m at time slot t, and we set l(1)n,k = ln,k[t]. At
the mth iteration, the agent An, ∀n ∈ {i, j} carries out the
following steps:

Step 1 (Temporary decision making): ∀n ∈ {i, j}, agent
An makes its mth temporary decision by

α(m)
n = argk max l

(m)
n,k , ∀k ∈ {1, 2, ...,K}.

Agent Ai then transmits its temporary decision α(m)
i to

Aj , and Aj sends its temporary decision α(m)
j to Ai.

Step 2 (Consensus checking): If α(m)
i = α

(m)
j , they stop

the communication and set ln,k[t + 1] = l
(m)
n,k , ∀k ∈

NH , and by (2) they have their decisions αi[t + 1] =

α
(m)
i and αj [t + 1] = α

(m)
j . Otherwise, they proceed

to the next step.

Step 3 (LCA implementation): Let αb = min(α
(m)
i , α

(m)
j )

and αB = max(α
(m)
i , α

(m)
j ). The agent An then

adapts its temporary log-belief from l
(m)
n,αB and l

(m)
n,αb

to l(m+1)
n,αB and l(m+1)

n,αb by implementing the LCA with
input LBR l

(m)
n,αB − l

(m)
n,αb .

Again, we use an example to illustrate the method.

Example 2 Let Ai and Aj be selected at time slot t and
and let their log-beliefs be li[t] = [−0.9,−0.2,−0.3]> and
lj [t] = [−0.3,−0.7,−0.4]>. According to (2), it is shown
that the optimal local consensus should be H3 because the
mean value of the log-beliefs ofH3 is the largest.

In the first iteration, by step 1, Ai and Aj exchange their first
temporary decisions α(1)

i = 2 and α(1)
j = 1. After step 2,

2They are called temporary because they are used for consensus checking.

they find that the local consensus has not been reached and so
they proceed to step 3. At step 3, both agents have αb = 1 and
αB = 2 and they implement the LCA with li,2[t]−li,1[t] = 0.7
and lj,2[t] − lj,1[t] = −0.4. Let the threshold update rule of
the LCA be given by the update rule in Example 1, and let ∆
be 1. Then we get that the log-beliefs after the adaptation in
step 3 are

l
(2)
i,2 = l

(1)
i,2 − 0.25 = −0.45, (12)

l
(2)
j,2 = l

(1)
j,2 + 0.25 = −0.45, (13)

l
(2)
i,1 = l

(1)
i,1 + 0.25 = −0.65, (14)

l
(2)
j,1 = l

(1)
j,1 − 0.25 = −0.55. (15)

In the second iteration, the log-beliefs have been up-
dated to l

(2)
i = [−0.65,−0.45,−0.3]> and l

(2)
j =

[−0.55,−0.45,−0.4]>, and the temporary decisions of the
agents are α(2)

i = 3, and α(2)
j = 3. At step 2, the agents deter-

mine that they have reached a local consensus, and thus they
update their log-beliefs to li[t+ 1] = [−0.65,−0.45,−0.3]>

and lj [t+1] = [−0.55,−0.45,−0.4]> and set their decisions
to αi[t+ 1] = αj [t+ 1] = 3.

We note that if the two conditions in Theorem 1 hold,
according to Theorem 2, the average log-belief of the two
agents in each hypothesis is constant. The latter guarantees
that once a local consensus is reached, it must be the optimal
consensus between the two agents. Also, since in every
iteration of the ELCA the two agents can eliminate one
hypothesis by implementing the LCA, it takes the agents at
most K − 1 iterations to reach a local consensus. Finally,
as shown in the simulations, the ELCA-based method has a
finite consensus time Tc such that ∀t > Tc and ∀n ∈ NA, the
decision of all the agents is αn[t] = αo, which is the decision
of the fictitious fusion center.

5. SIMULATION

In this section, we provide computer simulations that show
the convergence performance of the ELCA-based method.
The multi-agent cognitive system was modeled as a random
geometric graph G(NA, E), where the N agents were chosen
uniformly and independently on a square of size 1 × 1.
Each pair of agents was set to be connected if the Euclidean

distance between them was smaller than r(N) =
√

log(N)
N

due to connectivity requirement. In the experiment, the
connectivity was checked.

We considered the following hypothesis test: the agents
observed data and they had to choose between K = 10
hypotheses. We assumed that the agents observed data from
one of the following Gaussian hypotheses:

Hk : zn ∼ N(θk, σ
2
w), ∀k ∈ NH = {1, · · · , 10}, (16)
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where θk = kθ was known and the random perturbation
was modeled as a zero mean Gaussian random variable
with known variance σ2

w. For the prior probabilities of
the hypotheses, we let P (Hk) = 1/10. Without loss of
generality, we assumed that the data were generated fromH1,
and we set θ = 1, and σw = 5. Note that (16) is a very
simple model; however, the ELCA-based method can readily
be used for any model where the agents can obtain their initial
log-beliefs.

In the experiment, we had N = 20 agents, which observed
data generated from (16) and tried to reach consensus by the
proposed method. In implementing the ELCA, the agents
used the update rule from Example 1 with different values
of ∆, where ∆1 = 0.5, ∆2 = 2, ∆3 = 4, respectively. We
ran the experiment 1000 times.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

F̂T c[t]

ELCA based method with Δ1
ELCA based method with Δ2
ELCA based method with Δ3

Fig. 2. Cumulative distribution functions of consensus times
for ELCA with different parameters.

At each time slot t, we defined C[t] as the number of
trials where the agents reached the optimal consensus before
t. Then C[t]/1000 is an approximation of the cumulative
distribution function of the consensus time Tc, i.e, FTc [t] =
P (Tc ≤ t). The results are shown in Fig. 2, where we see
that the system using ELCA-based methods had finite TC
in all the trials. It can also be seen that for different values
of ∆, ELCA has the same asymptotical performance in this
simulation. Moreover, we emphasize that in each trial of this
experiment, once the consensus is reached among all agents,
it is identical with the decision held by the fictitious fusion
center.

In this experiment we also studied the communication cost
for reaching the local consensus. If we define the cost as
the number of decision transmissions by ELCA, then for ∆1,
∆2, and ∆3, the average communication cost was 9.22, 11.31,
12.49, respectively.

6. CONCLUSION

In this paper, we studied a system with Bayesian agents that
process data and use them to make decisions on the state of
nature. They exchange these decisions in a gossip manner
with neighbors until they reach local optimum consensus.
When the state of nature is binary, we have a proof that all the
agents attain the optimal consensus with probability one. We
generalized the method for multiple hypotheses, and showed
its performance by Monte Carlo simulations.
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