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ABSTRACT

There are emerging applications in which a robot must ex-
plore some physical area or do some surveillance task and
then communicate with a base station (BS) to transmit its in-
formation. Often this working environment has rich scattering
and so the wireless channel will experience small scale fad-
ing. In this paper we develop an algorithm whereby the robot
visits a specific number of locations with a pre-determined
geometry, and transmits its data from one of these locations
in an optimum way that minimizes the overall energy con-
sumption. We show analytically (and via simulation) that this
approach can both reduce the total energy required and obtain
a diversity gain for robotic wireless communications.

Index Terms— machine-to-machine communications;
mobility diversity; robotic communications.

1. INTRODUCTION

Robotic networks are a particular case of machine-to-machine
communications and there has been an increasing interest in
communication between robots [1]-[5]. It has been observed
that in fading scenarios we can control the position of the
robot to combat small-scale fading [1]-[3] by moving it to
a position where a better wireless channel exists. This is be-
cause there are applications in which a mobile robot must ful-
fil some exploration or surveillance task and then transmit the
information gathered during that task to a BS. The problem
to be solved is this: (i) the robot wants to search for an “opti-
mum” position corresponding to a channel with a large gain;
(ii) the energy used to transmit its data will be E1 (inversely
proportional to the square of the channel gain); (iii) the en-
ergy used in searching for this “optimum” position will be
E2; (iv) the objective is to devise a mobility diversity algo-
rithm that minimizes the total energy used, i.e., E1 + E2.

We are assuming that the application running in the BS
is delay tolerant, i.e., the robot can defer by some time the
transmission of the information and so the application does
not suffer any inconvenience.

∗The author acknowledge the funding of CONACYT, México.

In [1] the authors proposed to move the transceiver in ei-
ther a linear, random, circular or spiral outward motion to
look for a channel gain exceeding a specified threshold. Fol-
lowing this approach, the robot would need to estimate the
channel during all its motion (i.e., it would need to execute
the channel estimation algorithm a large number of times)
and so the robot would consume significant energy. In [2]
the robot has to follow a predefined trajectory in a certain
amount of time in order to complete a surveillance task and
the author proposes schemes in which the robot has to stop at
some points along its trajectory according to some optimiza-
tion rules. In [3] the author suggests that the robot randomly
selects a fixed number of points in a small circular vicinity
of its current location, explores those points, locates the point
that has the best channel and then transmits from this point.
In this last approach we can observe that there is not neces-
sarily a clear understanding about how to chose these points
and what is the gain that can be obtained from this kind of
strategy.

This paper is now laid out as follows. In section 2 we
describe the system model and in section 3 we present a mo-
bility diversity algorithm. In section 4 we introduce the “Etot
metric” which allows us to analyse the robot performance in
terms of overall energy consumption. In section 5 we intro-
duce the concept of adaptive diversity order. In section 6 we
briefly refer to channel estimation. Section 7 gives simulation
results and we finish with conclusions in section 8.

2. SYSTEM MODEL

The robot explores N different stopping points. Each stop-
ping point is represented by a coordinate qi in R2. The robot
is equipped with a transceiver and communicates with a BS.

So, the signal received by the robot (at the location qi)
from the BS is:

yi(k) = hix(k) + ni(k), i = 1, 2 · · · , N (1)

where hi is a complex, circularly symmetric, zero mean Gaus-
sian random variable with variance 2

π and independent real
and imaginary parts; |hi| is a Rayleigh distributed random

EUSIPCO 2013 1569747199
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variable with unit mean; and ni(k) is complex zero mean cir-
cular AWGN with variance σ2

ni
= σ2

n. We assume:

1. Channel reciprocity: the channels observed in the
downlink and the uplink are the same.

2. Flat fading: the channel is modelled as a complex
scalar, random variable.

3. Time invariance: we will assume that although different
channels are experienced, at each of the N stopping
points, these channels remain approximately constant
over the robot exploration time.

4. The covariance between the channel gains (|hi| and
|hj |) observed at points qi and qj is [6]:

Cij = J2
0

(
2πfc||qi − qj ||2

c

)
, i, j = 1, 2, · · · , N

(2)
where J0(·) is a zero-order Bessel function of the first
kind, c is the velocity of light and fc is the RF carrier
frequency.

Let the channel gain vector be h = [|h1|, |h2| · · · , |hN |]T
and let C be the normalized covariance matrix of h:

C =
NE[(h − E[h ])(h − E[h ])H ]

tr(E[(h − E[h ])(h − E[h ])H ])
. (3)

This definition (with Cij defined in (2)) will be used later in
section 3.2.

3. MOBILITY DIVERSITY

The motivation for the Mobility Diversity with Multiple
Threshold (MDMT) algorithm is to allow the robot to obtain
a good channel for data transmission while using the smallest
amount of total energy, i.e., the energy used for data transmis-
sion plus the energy used for channel estimation and energy
used to move the robot (as described in section 1).

The principle of MDMT is as follows: given N possible
positions the robot could visit them all and then return to the
one with the largest channel gain in order to transmit its data.
However, if during the search process the channel gain at one
of the N stopping points is “large”, then the probability of
the robot finding a significantly higher channel gain at one of
the remaining positions will be small (and the energy used in
searching these remaining positions will be wasted). This mo-
tivates us to check if the channel gain at the visited stopping
points exceeds a certain threshold, and then we can terminate
the search process.

3.1. Mobility Diversity Algorithm

The MDMT algorithm works as follows:

First, we calculate the number of stopping points (N ) that
the robot is allowed to visit, according to some optimum cri-
terion (see section 5). Once we have calculatedN , we choose
the optimum spatial configuration (see subsection 3.2) of the
N stopping points q1, q2, . . . , qN . The next step consists of
selecting a set of channel gain thresholds η1 = η2 =, . . . ,=
ηR = η (with 1 ≤ R ≤ N − 1). For R = 0, we assume that
no thresholds are used.

Once all the parameters of the algorithm are obtained the
robot proceeds to move. The stopping points are visited in as-
cending order starting at point q1. When the robot is at qi it
estimates |hi| with ˆ|hi|. If ˆ|hi| > ηi then the robot transmits
from qi and the algorithm terminates. If not, the robot moves
in a straight line to the next stopping point (qi+1). If the stop-
ping point qN is reached then the robot moves (if necessary)
to position qmax and transmits, where:

qmax = qk∗ , k
∗ = arg max

k∈{1,2,··· ,N}
{ ˆ|hk|}. (4)

The point at which the robot stops after executing the MDMT
algorithm is called qopt and qopt = qmax when there are no
thresholds (i.e., R = 0) or when the channel gain of the first
R stopping points is < η. Assuming independence between
all the channels, the CDF of |hopt| can be derived from the
MDMT algorithm description and is:

P(|hopt| < g) = P(
⋂N
i=1{|hi| < g},

⋂R
i=1{ ˆ|hi| < η})

+
∑R
i=1{P(|hi| < g, ˆ|hi| ≥ η)

∏i−1
j=1 P( ˆ|hj | < η)}.

(5)

3.2. Geometry of the Stopping Points

It is well known [7] that in order to maximize the diversity
gain we want |hi| and |hj | to be independent and so we choose
the qi’s appropriately to give C = I .

To explain how this happens first consider (2), and let
Dij = ||qi − qj ||2. It is not difficult to show that the re-
quired C = I can only be achieved exactly for N ≤ 3 and
with Dij = D, where D is the smallest value (to minimize

the energy) that also gives J2
0

(
2πfcD
c

)
= 0. The resulting

geometries can be observed in Fig. 1 (a) and Fig. 1 (b).
Note that for N = 4 we cannot satisfy C = I exactly,

but the geometry of Fig. 1 (c) is the best we could find1

and it has the property that its covariance matrix minimizes
||vec (C − I ) ||00, where || · ||00 is the l0 “norm”.

Finally, although we only consider N ≤ 4, this is the first
paper to address the topic of finding the optimum position of
stopping points to minimize the overall energy consumption.
A future paper will address the case of N ≥ 5.

1The geometry of Fig. 1 (c) was found by experimentation and was se-
lected from all the geometries that we analyzed because: (i) it is the geometry
which produces an |hopt| whose CDF is the closest to the case in which all
the channels are independent; (ii) it is the geometry which demands that the
robot travels the smallest distance while keeping C “close” to the identity
matrix I .
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Fig. 1. Optimal configuration of stopping points {qi}Ni=1 for:
(a) N=2, (b) N=3 and (c) N=4.

4. ENERGY CONSUMPTION

Consider a robot equipped with a transmitter using power
control and with no restriction on its maximum transmitting
power. Suppose the BS has to receive some minimum speci-
fied reference power (Pref ) to guarantee a certain BER. Sup-
pose that the robot executes the MDMT algorithm with N
stopping points.

The minimum power transmitted by the robot from qopt is
then:

Ptx(N) =
Pref
|hopt|2

(6)

and so the corresponding transmitted energy is:

Etx(N) = Ptx(N)MTb =
PrefMTb
|hopt|2

(7)

where M is the number of bits to be transmitted and Tb is the
bit duration.

For channel estimation, the robot receives S training sym-
bols from the BS and uses energy:

Eest(N) = NtotΞ(S). (8)

Here Ξ(S) is the energy used to estimate the channel at a
single stopping point. In addition Ntot is a random variable
(dependent on η and R) indicating the total number of visited
stopping points (i.e., with R = 0, Ntot = N ).

Finally, the total energy used by the robot for mechanical
motion (i.e., neither channel estimation nor data transmission)
is given by:

Emech(N) = f(s(qopt, t),u(qopt, t)) (9)

where f(s(qopt, t),u(qopt, t)) is the work done by the robot
(using the control law u(qopt, t) [8]) to execute the MDMT
algorithm and finishing at point qopt. Here s(qopt, t) is the
trajectory described by the robot when executing the MDMT
algorithm and this trajectory starts at q1 and finishes at qopt
(which is itself a random variable).

The work expended by the robot is the average force ex-
erted by the robot in the trajectory times the distance travelled
by the robot, i.e., f(s(qopt, t),u(qopt, t)) = α(u(qopt, t)) ×
L(s(qopt, t)), where L(s(qopt, t)) is the length of the trajec-
tory s(qopt, t) and α(u(qopt, t)) is the average force exerted

by the robot. Assuming that the control law governs directly
the velocity of the robot then we have:

α(u(qopt, t)) =
m

2T (qopt)D0

∫ T (qopt)

0

‖u(qopt, t)‖2dt

(10)
where m is the mass of the robot, T (qopt) is the time that
the robot takes to finish the trajectory s(qopt, t), and D0 is a
normalizing constant2.

So, let the total energy used (i.e., for data transmis-
sion, channel estimation and robot motion) normalized by
PrefMTb be:

Etot(N) = 1
|hopt|2 + NtotΞ(S)

PrefMTb

+
α(u(qopt,t))L(s(qopt,t))

PrefMTb
.

(11)

We observe in (11) that if we have a lot of data to send or if
the robot does not need too much force to move, then we can
increase the number of stopping points (and probabilistically
getting a larger |hopt|) and the total energy spent by the robot
will be reduced, due to the reduction in the term 1

|hopt|2 .
A measure of the average energy used will then be the

expected value of Etot(N):

E[Etot(N)] = E
[

1
|hopt|2

]
+ Ξ(S)

PrefMTb
E[Ntot]

+
α(u(qopt,t))
PrefMTb

E[L(s(qopt, t))].

(12)

When the threshold η in section 3.1 reduces there are bet-
ter channels that sometimes are not taken into account and
as a consequence E

[
1

|hopt|2

]
is a decreasing function of η.

Also when η reduces E[Ntot], as well as E[L(s(qopt, t))], are
both reduced (because the robot will move less) which im-
plies that they are increasing functions of η. This implies
that E[Etot(N)] has a unique minimum with respect to η.
A similar reasoning can be stated for N which implies that
E[Etot(N)] has a unique minimum with respect to N . In sec-
tion 5 we will discuss this in more detail.

In general it is difficult to obtain a closed form expression
for (12) that evaluates the E[·] terms. But it can be obtained
numerically via simulation, and this is what we do in section
7. However, it is interesting to note that for the special case
when we use the stopping point configurations of Fig.1 with
R = 0 (i.e., no channel gain thresholds) we obtain the follow-
ing expressions:

E[L(s(qopt, t)] =
N2 − 1

N
D (13)

E[Ntot] = N. (14)

2D0 = 1m and it has the purpose of making the units of α(u(qopt, t))
Newtons as f(s(qopt, t),u(qopt, t)) has units of Joules.
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Fig. 2. E[Etot(N)] versus η

And then using Maple software we can evaluate the remaining
terms in (12):

E[ 1
|hopt|2 ] = π

2 ln(2), for N = 2

E[ 1
|hopt|2 ] = π

4 (6 ln(2)− 3 ln(3)), for N = 3

E[ 1
|hopt|2 ] = π

4 (20 ln(2)− 12 ln(3)), for N = 4.

(15)

5. ADAPTIVE DIVERSITY ORDER AND
THRESHOLD OPTIMIZATION

Note that Kc =
α(u(qopt,t))
PrefMTb

in (12) can change over time
(e.g., different size of file to send, change of modulation, etc.).
When Kc changes and the robot wants to transmit it can find
the optimum diversity order (N∗) for each occasion by solv-
ing:

N∗ = arg min
N∈[1,2,··· ,Nmax]

{E[Etot(N)]} (16)

where in this case Nmax = 4 (see Fig.1). This optimization
of the diversity order according to the current value of Kc

before the algorithm execution introduces the new concept of
Adaptive Diversity Order.

As mentioned in section 4, E[Etot(N)] posses a unique
minimum with respect to the channel gain threshold η and
therefore we can optimize its value by solving:

η∗ = arg min
η∈R+

{E[Etot(N)]}. (17)

In Fig. 2 we plotted E[Etot(N)] as a function of η for the
three configurations of Fig. 1 to show that indeed (for a given
Kc) E[Etot(N)] has a unique minimum with respect to η.

It is worth pointing out that when R = 0 (i.e., no thresh-
olds) and if we do not use the adaptive diversity mechanism,
then from a mathematical point of view, then the MDMT al-
gorithm is equivalent to selection combining [9]. But the ad-
vantage here is that we only need one RF chain and one an-
tenna. In addition, the MDMT algorithm allows for adaptive
diversity order. The use of the thresholds in the MDMT algo-
rithm reduces the risk of doing movements which would lead

to loss of energy while promising only a small improvement
of the channel gain. This reduction in the risk saves energy
and improves the robot’s autonomy.

6. CHANNEL ESTIMATION

During the algorithm execution the BS uses TDD: in the first
slot it transmits a training signal which is used by the robot to
perform the channel estimation, while in the second slot the
BS is in receiver mode waiting for a transmission from the
robot. When the robot reaches the ith stopping point it listens
to the channel and waits for the training signal sent by the
BS. When the training signal is detected the robot proceeds
to perform a Data Aided Estimation of |hi|. The robot can
wait in the stopping point for another training signal to collect
more samples if necessary before moving to the next stopping
point.

7. MDMT ALGORITHM SIMULATION RESULTS

In order to perform the simulations, we generated Rayleigh
distributed channel gains with unit mean and normalized co-
variance matrix C with elements given by (2). We consid-
ered a SNR = 20dB at the robot transceiver and used the
following zero forcing channel estimator with S = 16 train-
ing symbols with unit modulus:

ˆ|hi| =
1

S

∣∣∣∑S−1
k=0 yi(k)x∗(k)

∣∣∣ . (18)

If Ξ(S) ≈ 0 (because we estimate the channel only few times
and therefore the energy used can be neglected) then we can
rewrite (11) as:

Etot(N) =
1

|hopt|2
+KcL(s(qopt, t)). (19)

Simulation 1: Threshold effect in the MDMT algorithm
We have simulated the CDF of |hopt| and the CDF ofEtot

(Fig. 3) for the MDMT algorithm with N = 1 (i.e., no diver-
sity) and N = 4 (Fig.1(c)) with: (a) R = 3 and η = 1.5 and
(b) R = 0.

First, we observe that the |hopt|’s CDF is worse forN = 1
than for N = 4 (cases (a) and (b)). Also from the Etot’s CDF
we observe that the probability of expending high amounts of
energy is bigger when we do not use the MDMT algorithm
(i.e., when N = 1). Therefore, the utilization of the MDMT
algorithm saves energy and selects “better” channels.

In addition, when we use channel gain thresholds we
obtain a small degradation of the |hopt|’s CDF but at the
same time the Etot’s CDF rises more quickly for smaller
values, i.e., there is a bigger probability of having small val-
ues. For case (a) we have E[Etot] = 0.9254 and for case (b)
E[Etot] = 1.1102. Therefore, case (a) is saving more energy
than case (b). This shows that we save more energy if we

4
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Fig. 3. CDF’s of |hopt| and Etot for the MDMT algorithm
with N=4 and N=1 (no diversity).

use the MDMT algorithm employing channel gain thresholds
(i.e., R > 0).

Simulation 2: Adaptive diversity mechanism
Consider a surveillance robot equipped with a transceiver

which has a mass m of 3 Kg, moving at a constant speed
v of 2 cm/s between the stopping points which gives α =
0.0006J/m. Let the carrier frequency be fc = 2.14GHz
which gives D = 5.37cm. Assume Pref =1mW in (6) and
Tb = 10ns. Consider that the robot can produce three differ-
ent types of files depending on the information recorded by
its sensors: measurements, images and video files; suppose
that their size are: 256kB, 800kB and 6MB respectively. All
this gives the following values of Kc for each type of file:
28.6102, 9.1553 and 1.1921 respectively. Also assume that
the robot produces a file of any type with the same probability.

Let the robot use the MDMT algorithm with the param-
eters η = 1.5, R = N − 1 and keep in memory the con-
figurations shown in Fig. 1. Then (because of the adaptive
diversity order mechanism (see section 5) and according to
the solution3 of (16)) the robot will run the MDMT algorithm
using the optimal diversity order for each case, i.e., N = 2
for the transmission of a measurement file, N = 3 for the
transmission of an image file and N = 4 for the transmission
of a video file.

So if the robot applies the MDMT algorithm using its
adaptive diversity order mechanism then E[Etot] = 1.7455
while if the robot applies the MDMT algorithm with N = 4
for all the files then E[Etot] = 2.2729 and if it uses N = 2
for all the files then E[Etot] = 1.9224. This shows that in or-
der to save the maximum amount of energy we should use the
MDMT algorithm using its adaptive diversity order mecha-
nism.

3The solution is: N∗ = 4 for Kc ∈ [0, 4.2], N∗ = 3 for Kc ∈
[4.3, 10.7] and N∗ = 2 for Kc ∈ [10.8,∞).

8. CONCLUSIONS

Using the MDMT algorithm the robot improves the channel
gain without any extra hardware and with reduced energy ex-
penditure. The channel gain threshold (η) lets the robot avoid
expending energy in movements which have only a promise
of low reward as regards improving the channel gain. The
stopping points have to be chosen in such a manner that (i)
their channel gains are uncorrelated and (ii) they are close
to each other so that the robot reduces energy expenditure in
moving through them. The Etot parameter gives us a metric
to quantify how much energy the robot can save. This is the
first time that the geometry of the stopping points has been de-
rived analytically to minimize energy consumption and max-
imize diversity gain.
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