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POSITRON EMISSION TOMOGRAPHY
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ABSTRACT

This paper deals with the restoration of Positron Emission To-
mography images. The partial volume effect creates blurring
in such images and causes inaccurate quantization. This arte-
fact is due to the complex geometry of the acquisition system.
We propose to represent this complexity by a spatially vari-
able point spread function. The PSF is first measured at a set
of locations in the field of view and estimated at any other
location. Existing linear interpolation methods consider only
the variability of the intensity. In order to consider shape vari-
ability of the PSF, we formulate the estimation of an unknown
PSF as mass transportation problem of known PSFs. An op-
timal transport optimization algorithm is used to solve the
problem. GATE simulations are used to evaluate the method
and compare it to a PCA based approach. Application to par-
tial volume assessment in reconstructed PET images is pre-
sented. The promising results set up the possibility to develop
more robust PET image restoration.

Index Terms— Partial volume effect, Point Spread Func-
tion, PCA, Optimal transport, PET images

1. INTRODUCTION

Positron Emission Tomography (PET) images are used in
clinical routine oncology to delineate tumors and quantify
their volume and malignity. However, the partial volume ef-
fect (PVE) is particularly frequent and severe in this modality
[1]. It tends to overestimate the size of tumors and makes their
assessment non-precise. It also results in smoothed images
that prevent the characterization of heterogeneity of tumors
[2]. This phenomenon is mainly due to the complex geometry
of the acquisition systems. It has been studied in many fields
of research such as astronomy or biological imaging and
many techniques of Partial Volume Correction (PVC) have
been proposed. In PET imaging, a recent literature review of
PVC techniques can be found in [3]. These can be classified
into two groups: correction of PVE during image reconstruc-
tion, and post-reconstruction techniques. Techniques in the
first group often give better results but require processing
raw data for reconstruction, which is not feasible in clinical
settings. The second group of techniques relies on deconvo-

lution algorithms such as Van-Cittert or Richardson-Lucy that
require the impulse response or Point Spread Function (PSF)
of the device. Usually, the observed image I is considered
as the unknown true image Î convolved with a Point Spread
Function (PSF) h, invariant inside the Field of View (FOV):

I = Î ∗ h (1)

However, because of the geometry of the detectors, the PVE
behaves significantly differently according to the position
within the FOV. The assumption that the PSF is invariant at
any point of the FOV leads to poor estimation of the original
source. Recent works attempt to remedy this problem by con-
sidering spatially variable PSF [4, 5, 6]. Two approaches are
commonly used: analytical modeling of the PSF or estimation
based on a calibration phase. The estimation consists usually
in interpolating the PSF at each position based on the impulse
responses measured at a set of few locations in the FOV. Due
to the fastidious measurement of source points in the FOV, a
coarse grid is often used requiring precise interpolation. In
[2], the authors presented a parametric model of the PSF and
derived continuous expressions of the parameters based on
functions of the radial distance to the center. Non parametric
methods which perform better are hindered by the computa-
tional time cost of the deconvolution. In astronomy, spatial
variability of the PSF has been represented as the linear in-
terpolation of eigen-PSFs obtained by PCA decomposition
[5, 7]. However, this technique poses normalization and non-
negativity problems [8]. This paper proposes an alternative
non-parametric method to estimate the spatially variant PSF
at each point of the FOV. The PSF is first measured on a grid
of source points. The interpolation of the PSF at any position
is formulated as mass transportation problem.

2. METHOD

2.1. Problem statement

Considering the PSF space dependent, the formation of the
image I can be modeled by a general case of a Fredholm in-
tegral of the first kind:

I(x) =

∫
Ω

Î(x′).hx′(x)dx′. (2)

EUSIPCO 2013 1569746765

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

where Ω is the domain of the image. We define the PSF
hx(.) by a vector of coefficients (hx(x1), ..., hx(xM )) where
xm,m ∈ {1 . . .M} are the discrete coordinates of points
of a 3-dimensional window centered in x. We consider the
PSF known at P locations {xp, p ∈ [1 . . . P ]} on a regular
grid in the FOV. For simplicity, we denote hp = hxp and
H = h1, ..., hp the set of known PSFs. The problem is how
to estimate hx(.) at any point x from H . Linear interpolation
such as used in PCA-based approaches is appropriate for data
that exhibit photometric variability [9]. However, the PSF has
also a geometric source of variability which cannot be recov-
ered by linear interpolation even with fine grids. This leads to
poor approximations between the reference points.

Geometric-PCA has been investigated in [9]. Given a ref-
erence PSF (href), the authors compute a family of diffeo-
morphic deformations that transform href into (h1, ..., hP ).
A PCA is performed on the diffeomorphisms, and a PSF hx
is expressed a linear combination of eigen-deformations ap-
plied to href. This approach ensures that the shape of the PSF
evolves continuously within the field of view. However, since
elastic deformations are not mass-conservative, the estimated
values might not sum to 1 leading to poor approximations.
To account for the variability of the shape of the PSF, we ex-
press the estimation of the unknown PSF as mass transporta-
tion based interpolation.

2.2. Motion-based interpolation

The proposed motion-based interpolation relies on a mass
transport problem, known as the Monge-Kantorovich prob-
lem [10, 11]. Its resolution gives the optimal way to displace
one reference PSF href to any other PSF hx, while conserving
its mass (values sum to 1).

The motion-based interpolation method presented here is
inspired by the two-point method developed in [12]. It con-
sists in four steps. First, each known PSF (hp) is expressed
as a mixture of Gaussians Gµp,i,σp,i

(x), called particles each
having a weight wp,i called mass. And one PSF is chosen
as reference (href ). Second, a mass transport registration is
performed between each (hp) and (href ). This results in map-
ping each particle of masswref,i to several particles of masses
{wp,j} with partial-masses wi→j

p . Third, we rewrite the mix-
ture of Gaussians for all known PSFs in order to have a set of
identical masses {qi1, ..., qiN} for every particle i. The esti-
mation of an unknown PSF at the location x is then done by
interpolating the parameters of the Gaussians corresponding
to identical masses and summing to compute its coefficients.
These steps are detailed in the following sub-sections.

2.2.1. Particle decomposition

In order to capture the variability of the shape of the PSF, we
consider any PSF hp as a mixture of Gaussian functions:

hp(x) =
∑
i

wp,iGθp,i(x) (3)

Each term is considered a particle characterized by its weight
wp,i and shape θp,i = (µp,i, σp,i). The decomposition can be
achieved using a non-negative least-squares formulation[12]:

arg min
wp,i

∑
m

[hp(xm)−
∑
i

wp,iGθp,i(xm)]2 (4)

2.2.2. Mass transport registration

Let href be one PSF chosen as reference among h1, ..., hP .
We consider the registration problem that expresses the trans-
formations mapping each href onto hp. In order to ensure
continuous evolution of the shape of the PSF, we formulate
the registration as a mass transportation problem. The under-
lying idea is to displace continuously each particle href,i =
wref,iGθref,i to hp,j = wp,jGθp,j . This leads to continuous
evolution of θ along the path taken during the transportation.
Solving the mass transportation problem is achieved by op-
timizing the Earth Mover’s Distance (EMD) between href,i
and hp,j ,∀(i, j):

ŵi→j
p = arg min

wp

∑
i

∑
j ci,jw

i→j
p ; with

href,i =
∑
j w

i→j
p Gθref,i

hp,j =
∑
i w

i→j
p Gθp,j

(5)

where ci,j is a known cost to move one unit from µref,i to
µp,j . Precisely, ci,j corresponds to their Euclidian distance
and wi→j

p is the unknown quantity to be moved from µref,i
to position µp,j . This optimization problem is solved using a
network simplex method [12]. As a result, we can write:

hp(x) =
∑
j

∑
i

wi→j
p Gθp,j (x) (6)

2.2.3. Multi-point interpolation

The resolution of the previous mass transport problem causes
each particle composing the reference href to be paired with
one or more particles in the target distributions hp, in such a
way that:

∀i,∀p, wref,i =
∑
j

wi→j
p (7)

Based on this, the aim of the multi-point interpolation phase is
to estimate the PSF at any location. We define a set of weights
Qi = {qi,1, ..., qi,N} and Qip,j ⊂ Qi a subset of Qi, so that:

wi→j
p =

∑
q∈Qi

p,j

q;∀i,∀j,∀p, and

wref,i =
∑
q∈Qi

q
(8)
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Intuitively, this decomposition consists in splitting the parti-
cles in such a way that each particle composing href matches
a unique particle of the same mass in each target distributions
hp. The algorithm 1 describes the process of splitting the par-
ticles to construct the set of masses Qi.

Algorithm 1 Particle splitting
Initialization

1: ∀i, Qi ← ∅
2: ∀i, j, p,Qip,j ← ∅
3: ∀i, j, p, w̃i→j

p ← wi→j
p

4: n← 1
For each particle of the origin

5: for all i do
6: repeat

Find the heaviest particle for each p and the associated j
7: ∀p, w̃max

p ← max
j
w̃i→j
p

8: Jmax ← {argmax
j

w̃i→j
p }p

Create the new particle
9: qi,n ← min

p
w̃max
p ; n← n+ 1

10: Qi ← Qi ∪ {qi,n}
11: ∀p,∀j ∈ Jmax, Q

i
p,j ← Qip,j ∪ {qi,n}

Subtract the mass
12: ∀p,∀j ∈ Jmax, w̃

max
p ← w̃max

p − qi,n
13: until qi,n < 0.0001
14: end for

Now, a given particle of mass q is associated to specific
parameter θp,k = (µp,k, σp,k) at each location p of the learn-
ing set. It is then easy to interpolate this pair of parameters
(µx and σx) to estimate the behavior of the particle at any
position x of the FOV. Having obtained the resulting coordi-
nates for each particle, and knowing their mass, the PSF at
any point hx can finally be reconstructed as the sum of these
particles.

3. APPLICATION TO PET IMAGES

3.1. Data simulation

Experiments have been conducted on a simulated GE Discov-
ery ST PET/CT 3D scanner using the software GATE [13].
Because of the scanners tangential symmetry, we considered
that the PSF is characterized by its center at axial and radial
position (ρ, z) and varies in the 3D space (~ρ, ~z, ~ϕ). The PSF
that are not located in the plane ϕ = 0 are obtained by a rota-
tion of ϕ after estimating the corresponding PSF in the plane.
During the learning phase, a set of source points (hereafter
called learning set) have been positioned at different radii and
depth from the scanner’s center, on a regular grid, at radial
distances: 0, 70, 140, 210 and 280 mm and at axial posi-
tions 0, 15, 30, 45, and 60 mm. This configuration allows
covering all the possible shapes of the PSF. The source points

have been modeled by a 0.1mm radius sphere with a 100′000
becquerels activity during an exposition of 30 minutes. The
images of each source point have been reconstructed by an
MLEM algorithm (10 iterations) [14], without blurring filter,
in order to preserve the data statistics. The size of the recon-
structed image was set to 256× 256× 48 pixels.

3.2. Results of the PCA

A PSF basis was calculated by applying PCA on the learning
set. Figure 1 shows the normalized cumulative variance ac-
cording to the number eigen-vectors K kept in the basis. One

Fig. 1. Normalized cumulative variance

can see that 6 eigen-vectors are sufficient to model 95% of the
variability of the PSF, and 10 to cover 99% of the variance.

The coefficients associated to the first 4 eigen-PSF,
through the plane (ρ, z), are displayed in figure 2 . As

Fig. 2. Coefficients associated to the first 4 eigen-PSF in the
plane (~ρ, ~z) (The white dots are the positions of the learning
set).

expected, the variability of the PCA mainly occurs along the
radial direction ~ρ. The variance of the PSF’s shape does not
vary significantly in the axial direction ~z because the axial
configuration of the scanner is symmetric, except for the po-
sitions that are subject to border effect. At last, one notice
that for some directions (e.g. third component), the coeffi-
cients are not regular, justifying the use of another type of
interpolation in which the coefficients are more regular.

3.3. Partial Volume Effect retrieval

The aim of these experiments was to compare the retrieval
of the PSF at any location of the FOV. A set of 41 source
points have been generated at random positions inside the
FOV. The reconstructed images have been cropped and com-
pared to PSF estimated from 3 approaches:

• A spatially invariant PSF href.

3
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• A spatially variant PSF, based on the PCA decomposi-
tion hpca(x), as presented in [5, 7].

• A spatially variant PSF, based on mass transportation
hmt(x), as explained in ??.

Note that href used in the first method is the same as the refer-
ence PSF used in the motion-based interpolation method.

The Euclidian distances between the measured and es-
timated images has been computed, and summed over the
41 testing set. The results are presented in table 1. The

Method Sum of the distances
Spatially invariant PSF (href ) 4.79

PCA-based method (hpca) 2.63
Mass transportation-based (hmt) 0.67

Table 1. Sum of the Euclidian distances between the mea-
sured and estimated images of the testing set

motion-based interpolation offers by far the best results. As
expected, the use of the spatially-variant hpca is still better
than the spatially-invariant href.

Figure 3 shows an example of a 2D-slice of the mea-
sured PSF, and its corresponding estimations from the three
approaches. One sees that the PSF hpca obtained from the lin-

Measured href hpca hmt

Fig. 3. Measured PSF and estimations from the three meth-
ods.

ear interpolation method is more spread than the other PSF.
That comes from the fact that the estimated PSF hpca is ex-
pressed as a mixture of PSFs obtained from the learning set
that may not aligned one to another.

4. CONCLUSION

This paper presented a mass transport based method to esti-
mate a spatially variable PSF from a learning set. The method
consists in expressing the PSF as a mixture of Gaussians,
or particles. The weights or masses of each mixture of a
known PSF are registered to a reference PSF. The resulting
weights serve to rewriting the mixture in order to have iden-
tical masses for every particle. The estimation of the PSF
at a any position becomes the mixture of interpolated Gaus-
sians corresponding to identical masses. Experiments have
been conducted on GATE data simulated for a General Elec-
tric PET/CT acquisition system. Comparison with a PCA-
based approach show very significantly better results to our

method.
Future work will concentrate on fast deconvolution methods
based on our representation of the PSF in a similar way to
[5] for PCA-based deconvolution. The idea is to speed up the
convolution based on the fact that our PSF is a sum of gaus-
sians, that can be seen as separable kernels. Another perspec-
tive concerns integrating this method in a blind deconvolution
approach.
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de Mathématiques de Toulouse - IMT , Centre de
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