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ABSTRACT

In this paper, we introduce an adaptive distributed technique
that attains the exact (Recursive Least Squares) RLS solution
of a node-specific parameter estimation problem where each
node is interested in a set of parameters of local interest and a
set of global parameters. To do so, each node of the network
relies on its own local data as well as the communication with
its intermediate neighbor under an incremental mode of co-
operation. Since the required inter-node communication of
the new scheme may be prohibitive for networks with scarce
energy resources, an alternative low-cost scheme is derived to
reduce the communication burden. It is shown that this ap-
proximate strategy may attain the exact RLS solution in the
steady state. To illustrate the effectiveness of the proposed
techniques we provide some indicative simulation results.

Index Terms— Adaptive distributed networks, incremen-
tal algorithm, node-specific parameter estimation.

1. INTRODUCTION

To enable low-complex distributed implementations of the es-
timation task, there have been considerable research efforts
on optimization techniques that generally rely on some sep-
arable structure of a cost function defining a linear estima-
tor. Based on them, eliminating the need to embed powerful
processors at the nodes, different algorithms based on Least
Mean Squares (LMS) have been developed to estimate a set of
parameters of global interest to all nodes of the network [1]-
[3]. However, available processors continuously decrease in
cost and have more powerful batteries as well as computa-
tional capabilities. To provide better estimation performance
at the expense of increased computational complexity and en-
ergy consumption, RLS-type algorithms have also been de-
rived under the approaches considered in the development of
the aforementioned LMS-type strategies [4]-[6].

Up to now, in many of the distributed estimation prob-
lems, it is considered that the nodes are interested in estimat-

The work was partially supported by the European SmartEN ITN project
(Grant No. 238726) under the Marie Curie ITN FP7 program and by the
University of Patras.

ing the same vector of global parameters. This scenario can
be viewed as a special case of a more general problem where
the nodes of the network have overlapped but different esti-
mation interests. To motivate this node-specific setting, let
us consider an example related to environmental monitoring.
Specifically, consider a set of applications related to localiza-
tion of diffusive sources which may include the temperature
field, toxic chemicals in air and water, pollutants etc. Now, let
us assume multiple diffusive sources affecting an area covered
by N nodes (see Fig.1). Each node k is located at a known
position and can measure the substance concentration:

yk(rkg , rkl
, t) = ckg (rkg , t) + ckl

(rkl
, t) + e(t)

where e(t) denotes measurement noise, ckg represents the
concentration of the global source at node k, while ckl

de-
notes the substance concentration that originates from a local
source affecting only the area of node k. By leveraging the
dependence of ckg

and ckl
on the distances between a node

and the aforementioned sources, denoted with rkg and rkl
,

the estimation task of each node would be the localization of
its neighboring (local) source and of the global source.

Despite the fact that Node-Specific Parameter Estimation
(NSPE) problems appear in several applications, only few rel-
evant papers may be found in the literature. In one of these
few works [7], under the consensus approach, the authors use
the alternating direction method of multipliers in order to en-
force the nodes to reach an agreement when estimating pa-
rameters of common interest. In [8], the authors apply dif-
fusion adaptation and scalarization techniques to a specific
multi-objective optimization problem that appears in a NSPE
setting where there is no prior knowledge regarding the over-
lapped estimation interests. More related to present paper, the
authors in [9] consider a NSPE problem where, as it happens
in many applications, there is available some prior knowledge
about the estimation interests associated with each node. To
solve this problem, they rely on adaptive filtering techniques
to derive a distributed incremental-based LMS that converges
to the minimum mean-square error (MMSE) solution of the
corresponding centralized problem.

Here, we firstly propose an incremental-based distributed
algorithm that implements the exact RLS solution of a NSPE

EUSIPCO 2013 1569746681

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

!"#!

!"# ! !"+$% !

!"#!

!"−$% !
!"#!

node%1% !"!

node%2%

node%k)1%

node%k%

node%N% node%k+1%

. . .

. . .. . .

. . .

Fig. 1. Network with node-specific parameter estimation in-
terests.

problem where each node of the network is interested in es-
timating some parameters of local interest and some param-
eters of global interest. The resulting algorithm outperforms
the LMS solution [9] at the expense of increased transmission
requirements. Later, since the involved communications cost
may be prohibitive in some applications [10], we modify the
initial scheme to reduce the communication burden. Finally,
the performance of the proposed schemes is illustrated via in-
dicative computer simulations.

We use boldface letters for random variables and normal
fonts for deterministic quantities. Capital letters refer to ma-
trices and small letters refer to both vectors and scalars. More-
over, the Hermitian transposition is denoted by (·)H . We use
the weighted norm notation ∥x∥2Σ , xHΣx where x a vector
and Σ > 0. Finally, 0L×M denotes a L×M zero matrix.

2. PROBLEM FORMULATION

To begin with, let us consider that a network of N nodes
is randomly deployed over some region in order to estimate
some unknown vectors of parameters (see Fig.1). At every
time instant i, each node k has access to data {dk,i, Uk,i}.
These data are assumed to be related to the unknown vectors
of parameters by the following model

dk,i = Uk,iw
o
k + vk,i =

[
Ukg,i Ukl,i

] [wo

ξok

]
+ vk,i (1)

where, for each time instant i,

- wo
k equals the vector of dimension Mk that contains

all the parameters of interest for node k. This vector
is formed by wo, which is a sub-vector of dimension
Mg × 1 consisting of all the parameters of global in-
terest, and by ξok, which is a sub-vector of dimension
Mkl
×1 that gathers all the parameters of local interest,

- vk,i is measurement and/or model noise with zero mean
and covariance matrix Rvk,i of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with di-
mensions Lk × 1 and Lk ×Mk, respectively. Forming

the matrix Uk,i, the matrices Ukg,i and Ukl,i, of di-
mensions Lk×Mg and Lk×Mkl

, might be correlated,
and consist of the columns Uk,i associated withwo and
ξok, respectively.

In most existing works, e.g., [5] and [6], the derived adap-
tation schemes assume wo

k = wo, for all k ∈ {1, 2, . . . , N}.
As in our previous work [9], we consider a scenario where
the node-specific parameters of interest, i.e., {wo

k}Nk=1, may,
in general, be different. Hence, the objective for each node
k is to estimate its specific unknown vector wo

k from the data
{dk,i, Uk,i}, k ∈ {1, 2, . . . , N}. In particular, as shown in
Fig. 1, each vector {wo

k}Nk=1 consists of globally common
components as well as components of local interest for sen-
sor k. The parameters of global interest in the network may
account for an event common to all nodes. In contrast, the
parameters of local interest for each node k may represent an
influence of some local phenomena that is different for each
node.

Given the previous observation model, the goal for each
node k is to collect the measurements and regressors from
time 0 up to time i, i.e.,

Yk,i = col{dk,0, dk,1, . . . , dk,i}

and

Hk,i = col{Uk,0, Uk,1, . . . , Uk,i},

respectively, in order to obtain the node-specific estimators
{wk}Nk=1 that minimize the associated weighted, regularized,
least-squares cost

N∑
k=1

(
λi+1∥wk∥2Πk

+ ∥Yk,i −Hk,iwk∥2Wk,i

)
, (2)

where Πk = δ−1IMk
and

Wk,i = diag{λiΓk, λ
i−1Γk, . . . , λΓk,Γk}

with δ > 0 equal to a large constant, Γk = R−1
vk,i

and for-
getting factor 0 ≪ λ ≤ 1. Thus, after particularizing for
global and local vector of parameters, our NSPE problem can
be casted as

{ŵ, {ξ̂k}Nk=1}

= argmin
w,{ξk}N

k=1

{
N∑

k=1

λi+1
[
wH ξHk

] [Πk,g 0
0 Πk,l

] [
w
ξk

]

+

N∑
k=1

∥Yk,i −Hg
k,iw −H

l
k,iξk∥2Wk,i

}
(3)

where

Hg
k,i = col{Ukg,0, Ukg,1, . . . , Ukg,i}

and

Hl
k,i = col{Ukl,0, Ukl,1, . . . , Ukl,i}.
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3. A SOLUTION OF THE NSPE PROBLEM

In this section, we firstly derive a centralized solution of the
optimization problem (3), and then we develop a distributed
strategy that converges to this centralized solution. For the
sake of simplicity and without losing generality, we assume
that Mk = M , Mg = Mg , Mkl

= Ml and Lk = L for all
k ∈ {1, 2, . . . , N}.

3.1. Centralized solution

To solve the considered NSPE problem in (3), we have to op-
timize a scalar real-valued cost function with respect to (w.r.t.)
multiple vector variables, i.e., {w, {ξk}Nk=1}. After defining
the following augmented vector

w̃ =
[
wT ξT1 ξT2 · · · ξTN

]T
( M̃ × 1 )

and gathering all the data up to time i into

Yi = col{y0, y1, . . . , yi} (N · L · (i+ 1)× 1 )

and

H̃i = col{H̃0, H̃1, . . . , H̃i} (N · L · (i+ 1)× M̃ ) (4)

where M̃ =Mg +N ·Ml. In the definition of Yi and H̃i

yi = col{d1,i, d2,i, . . . , dN,i} (N · L× 1)

H̃i = col{Ũ1,i, Ũ2,i, . . . , ŨN,i} (N · L× M̃)

and the augmented regressor is expressed as

Ũk,i =
[
Ukg,i 0L×Ma Ukl,i 0L×Mb

]
(5)

with Ma = (k − 1)Ml and Mb = (N − k)Ml. Now, we can
easily verify that our optimization problem is equivalent to

̂̃w = argmin
w̃

{
λi+1∥w̃∥2

Π̃
+ ∥Yi − H̃iw̃∥2Wi

}
(6)

where
Wi = diag{λiD,λi−1D, . . . , λD,D}

and

Π̃ = diag

{
N∑

k=1

Πk,g,Π1,l,Π2,l, . . . ,ΠN,l

}
,

with
D = diag{Γ1,Γ2, . . . ,ΓN}.

It is well-known that the solution ̂̃wi is given by [11]:

̂̃wi = P̃iH̃H
i WiYi, (7)

where

P̃i =
(
λi+1Π̃ + H̃H

i WiH̃i

)−1

. (8)

However, this centralized batch solution requires the inver-
sion of a square matrix whose dimension is actually propor-
tional to the number of nodes N . In addition, it requires that
we store in memory all data available until time i. Hence,
a prohibitively high computational and memory-wise cost is
needed.

3.2. Distributed solution

With the aim of increasing energy efficiency and improving
robustness and scalability it is highly desirable to design a
distributed and adaptive scheme in order to update ̂̃wi−1 tỗwi. Toward this goal, we firstly develop a distributed recur-
sion for P̃i.

By following the approach described in [5], we firstly ex-
press the relation (8) as follows

P̃−1
i = λi+1Π̃ + H̃H

i WiH̃i

= λ
(
λiΠ̃ + H̃H

i−1Wi−1H̃i−1

)
+ H̃H

i DH̃i

= λP̃−1
i−1 + H̃H

i DH̃i.

(9)

After noting that (9) can be rewritten as a sequence of rank-L
updates, we can apply the matrix inversion lemma so that the
following distributed recursion for P̃i is obtained

P̃0,i ← λ−1P̃N,i−1

for k = 1 : N

G̃k,i =
(
Γ−1
k + Ũk,iP̃k−1,iŨ

H
k,i

)−1

P̃k,i = P̃k−1,i

+ P̃k−1,iŨ
H
k,iG̃k,iŨk,iP̃k−1,i

end

(10)

where P̃k,i denotes the local estimate of P̃i at node k at some
time instant i.

Now, let us focus on the distributed update of ̂̃wi−1 tỗwi. Toward this goal, let us define the intermediate global
matrices Yk

i and H̃k
i that stack Yi−1 and H̃i−1 in addition to

the measurements and regressors collected across the network
at time i up to node k, respectively,

Yk
i =


Yi−1

d1,i
d2,i

...
dk,i

 and H̃k
i =


H̃i−1

Ũ1,i

Ũ2,i

...
Ũk,i

 .

Given the previous definitions, we can easily check that the
local estimate w̃i at node k, i.e., ψ̃(i)

k , at any time instant i is
equal to the solution of the following LS problem

ψ̃
(i)
k = argmin

w̃

{
λi+1∥w̃∥2

Π̃
+ ∥Yk

i − H̃k
i w̃∥2Wk

i

}
(11)
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where

Wk
i =

[
λWi−1 0

0 Dk

]
and Dk = diag{Γ1, . . . ,Γk}. Next, if we take into account
that the solution of (11) is equal to

ψ̃
(i)
k = P̃k,i[H̃k

i ]
HWk

i Yk
i , (12)

by using (10) and noting that

Wk
i =

[
Wk−1

i 0
0 Γk

]
and

[H̃k
i ]

HWk
i Yk

i = [H̃k−1
i ]HWk−1

i Yk−1
i + ŨH

k,iΓkdk,i,

several algebraic manipulations similar to the ones under-
taken in [5] yield the following distribute recursion for ψ̃(i)

k

ψ̃
(i)
k = ψ̃

(i)
k−1 + P̃k−1,iŨ

H
k,iG̃k,i

(
dk,i − Ũk,iψ̃

(i)
k−1

)
. (13)

Finally, if we group the recursions (10) and (13), we ob-
tain a distributed incremental-based RLS algorithm that pro-
vides the exact solution to the centralized NSPE problem (6).
The new algorithm is summarized as follows

Incremental-Based NSPE RLS (I-NSPE RLS)

• Initialization: ψ(−1)
N = 0, P̃N,−1 = Π̃−1.

• At each time i ≥ 0, for each k ∈ {1, . . . , N} execute

ψ̃
(i)
0 ← ψ̃

(i−1)
N ; P̃0,i ← λ−1P̃N,i−1

ek,i = dk,i − Ũk,iψ̃
(i)
k−1

G̃k,i =
(
Γ−1
k + Ũk,iP̃k−1,iŨ

H
k,i

)−1

ψ̃
(i)
k = ψ̃

(i)
k−1 + P̃k−1,i Ũ

H
k,i G̃k,iek,i

P̃k,i = P̃k−1,i + P̃k−1,iŨ
H
k,iG̃k,iŨk,iP̃k−1,i

(14)

3.3. Low-communication distributed RLS

Although the previously developed distributed algorithm (14)
provides the exact RLS solution to the NSPE problem (6),
it needs O(M̃2) transmission complexity which can be pro-
hibitive for applications with strict energy constraints. Moti-
vated by this fact, at the expense of some performance degra-
dation, we propose a simplified implementation that approx-
imates P̃k,i by a block diagonal matrix to reduce the number
of transmitted parameters between two neighboring nodes.

A careful inspection of (5) together with (14) reveals that,
under a block diagonal approximation for P̃k,i, only two sub-
vectors of ψ̃(i)

k and two submatrices of P̃k,i are updated at

each node and at a some specific time instant i. In particular,
according to the recursions (10) and (13), only the subvectors
associated with the local estimates of wo and ξok at node k
and time instant i, denoted as ψ(i)

k and ξ(i)k , respectively, are
updated from ψ

(i)
k−1, ξ(i−1)

k ,

P̃k−1,i(1 :Mg) = P(k−1)g,i

and

P̃k,i−1(Mg +Ma + 1 :Mg +Ml +Ma) = Pkl,i−1

where A(la : lb) equals a square submatrix defined by the
rows and columns la, la +1, la +2, . . . , lb with la ≤ lb. Sim-
ilarly, at each time instant i each node k updates the subma-
trices Pkg,i and Pkl,i based on P(k−1)g,i

and Pkl,i−1. There-
fore, without any loss of optimality w.r.t. the steady state per-
formance of I-NSPE RLS when Ukg,i and Ukl,i are indepen-
dent, the previous facts allow to properly modify (14) in order
to obtain the subsequent incremental-based algorithm

ψ
(i)
0 ← ψ

(i−1)
N ; P0g,i ← λ−1PNg,i−1

for k = 1 : N

ek,i = dk,i − Uk,i

[
ψ
(i)
k−1

ξ
(i−1)
k

]
Gk,i =

(
Γ−1
k + Ukg,iP(k−1)g,i

UH
kg,i

+λ−1Ukl,iPkl,i−1 U
H
kl,i

)−1[
ψ
(i)
k

ξ
(i)
k

]
=

[
ψ
(i)
k−1

ξ
(i−1)
k

]
+

[
P(k−1)g,i

UH
kg,i

λ−1Pkl,i−1U
H
kl,i

]
Gk,iek,i

Pkg,i = Pk−1g,i − P(k−1)g,i
UH
kg,i

Gk,iUkg,iP(k−1)g,i

Pkl,i = λ−1Pkl,i−1 − λ−2Pkl,i−1U
H
kl,i
Gk,iUkl,iPkl,i−1

end
(15)

Note that, under the above strategy, each node only needs
to transmit the blocks of P̃k,i and ψ̃(i)

k corresponding to the
global vector of parameters, i.e., Pkg,i and ψ(i)

k respectively.
Since the dimension of the vector of global parameters equals
Mg, the scheme in (15) requires only O(M2

g ) transmission
complexity, which is not dependent on the network size.

4. SIMULATIONS

We assume a network with N = 10 nodes where the mea-
surements follow the observation model (1) with Mlk = 8,
Mg = 10 and Lk = 1 for all k = {1, . . . , N}. We have also
considered a forgetting factor λ = 1 and that the background
noise vk,i has variance σ2

v,k = σ2
v = 10−3 across the net-

work. Additionally, we have assumed that the regressors ukg,i

and ukl,i are independently generated according to a time-
correlated spatially independent Gaussian distribution. In par-
ticular, both ukg,i and ukl,i follow a stationary first-order au-
toregressive (AR) model with correlation functions rkg (i) =

4
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Fig. 2. Learning behavior of network MSD.

σ2
u,kg

α
|i|
g and rkl

(i) = σ2
u,kl

α
|i|
l , respectively. In the previous

AR models, the parameters {αg, αl} and {σ2
u,kg

, σ2
u,kl
} have

been randomly chosen in [0,1) so that the signal-to-noise-ratio
at each node is different and varies from 14 dB to 17 dB.

We compare the performance of the I-NSPE RLS strategy
provided in (14), its low-communication version summarized
in (15) and denoted as I-NSPE LC-RLS, as well as the I-
NSPE LMS algorithm derived in [9]. Specifically, for each
one of these I-NSPE algorithms, Figure 2 depicts the learn-
ing behaviour of the network mean-square deviation (MSD)
associated with the estimation of wo and ξok. The curves have
been generated by averaging 50 independent experiments.
We can note that, at the expense of increased computational
complexity, both I-NSPE RLS and I-NSPE LC-RLS outper-
form I-NSPE LMS in terms of steady state floor and rate of
convergence. Since the processes of estimating wo and ξok are
coupled though the observation model, the improved perfor-
mance appears in both estimation tasks. Furthermore, as it
was expected during the derivations of the proposed schemes,
under the considered scenario, I-NSPE LC-RLS achieves
identical steady state performance with I-NSPE RLS. In fact,
as a result of reducing the transmission complexity of I-NSPE
RLS, in the considered setting the I-NSPE LC-RLS scheme
suffers only a small performance loss in the rate of conver-
gence.

5. CONCLUSION

We addressed a novel NSPE problem where the estimation
interests of the nodes comprise a set of local parameters and
a set of network global parameters. Toward this goal, we
initially proposed an incremental-type scheme that, in a dis-
tributed fashion, implements the exact RLS solution of a cen-
tral unit processing the data of all the nodes. Next, we de-
rived a scheme with lower transmission complexity for appli-
cations where the communications and energy resources are
scarce. Additionally, it was shown that this simplified scheme
may converge to the exact RLS solution. Finally, by perform-
ing computer simulations we showed the effectiveness of the
proposed algorithms. Due to limited space we have not in-
cluded any theoretical analysis concerning the performance
of the proposed techniques. A complete analysis is currently
being conducted and will appear in a forthcoming paper.
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