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ABSTRACT

One of the main drawbacks of OFDM systems is the high

peak-to-average-power ratio (PAPR). Most of the PAPR

reduction techniques require transmitter-based processing.

However, we propose a receiver-based low-complexity clip-

ping signal recovery method. This method is able to i) reduce

PAPR via a simple clipping scheme, ii) use a Bayesian recov-

ery algorithm to reconstruct the distortion signal with high

accuracy, and iii) is energy efficient due to low complexity.

The proposed method is robust against variation in noise and

signal statistics. The method is enhanced by making use of all

prior information such as, the locations and the phase of the

non-zero elements of the clipping signal. Simulation results

demonstrate the superiority of using the proposed algorithm

over other recovery algorithms.

Index Terms— Sparse signal estimation, PAPR reduc-

tion, tone reservation, SABMP, OFDM

1. INTRODUCTION

Recently, orthogonal frequency-division multiplexing (OFDM)

has been adopted for high-speed wireless communications

due to its robustness against multipath fading. One of the

major drawbacks of OFDM which leads to inefficient use of

nonlinear high power amplifiers (HPA), is its high peak-to-

average-power ratio (PAPR). Operation in nonlinear region

of HPA is power efficient but causes distortion. Though one

option is to back off and let the HPA operate in the linear

region, it results in power inefficiency. A high PAPR signal

requires power amplifiers with linear response over a wide

range, hence, expensive transmitters. This is one of the main

reasons why in LTE the use of OFDM in the uplink was

avoided [1, 2].

Many transmitter-based techniques have been proposed to

reduce the PAPR, including coding, partial transmit sequence

(PTS), selected mapping (SLM), interleaving, tone reserva-

tion (TR), tone injection (TI) and active constellation exten-

sion (ACE) [2–5]. However, the drawback is increased trans-

mitter complexity and the advantage of energy efficiency pro-

vided by PAPR reduction is lost. In many applications which

The authors would like to acknowledge the support provided by the

Deanship of Scientific Research at KFUPM under Research Grant FT100030.

have limited source of power (e.g. satellites, mobile phones

etc.), the transmitter complexity is the bottleneck, and hence

there is a need for energy efficient low complexity alterna-

tives.

Recently, compressive sensing (CS) techniques have been

proposed for PAPR reduction [6, 7]. These techniques re-

quire simple clipping scheme at the transmitter and relegate

any distortion mitigation at the receiver side. A hybrid ap-

proach composed of transmitter-side and receiver-side CS is

presented in [8]. However, these techniques are based on

convex relaxation regularized ℓ1-optimization and suffer from

high complexity. In addition, they do not make full use of a

priori information that could enhance the performance.

In this paper, we propose a Bayesian approach to receiver-

based PAPR reduction which by its nature is energy efficient

due to low complexity. While the approach is Bayesian (thus

acknowledging the sparsity of sparse clipping signal and the

Gaussianity of the additive noise), it is agnostic to the distri-

bution of the sparse signal support and robust to uncertainty

in the noise variance and the sparsity rate. The approach

is enhanced by utilizing a priori information about the clip-

ping signal from the received signal including the phase infor-

mation and probable locations where clipping has occurred.

Hence, on one hand, our approach is robust against the uncer-

tainties of clipping signal statistics, while on the other hand,

the approach utilizes the received signal to extract information

that assists in a robust recovery of clipping signal. In addition,

sparsity recovery is achieved via a greedy low-complexity

Bayesian matching pursuit method.

The remainder of the paper is organized as follow. Sec-

tion 2 introduces data model for OFDM signals with clipping.

In Section 3 we present the proposed clipping signal recovery

algorithm. In Section 4, we present the simulation results and

the conclusion is presented in Section 5.

1.1. Notation

We use lower case, bold-face letters for time domain vectors

(e.g. x) and upper case bold-face letters (e.g. X) for matrices.

We denote Discrete Fourier Transform (DFT) of a vector x

by X . Further, we use x̂, xT, xH and x(i), to denote the

estimate, transpose, conjugate transpose (or Hermitian) and

the ith element of vector x respectively.
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2. DATA MODEL

Let us consider an OFDM system in which the incoming in-

formation bits are mapped into an L-ary QAM constellation

and concatenated to form an N -dimensional frequency do-

main data symbols vector X . Its time domain counterpart

x is obtained by performing IDFT i.e., x = FHX , where F

is a unitary DFT matrix with its (k, ℓ)th element F(k, ℓ) =
1√
N

e−j2πkℓ/N , k, ℓ ∈ {0, 1, ..., N − 1}. This time-domain

signal has a high PAPR which can be reduced through a sim-

ple clipping scheme by subjecting the signal to a magnitude

limiter as follows

xp(i) =

{

γeθx(i) if |x(i)| > γ
x(i) otherwise

(1)

where xp(i) is the ith element of the signal after clipping, γ
is the limiting threshold and θx(i) is the phase of x(i).

This clipping scheme assures that, i) the phase of c is

exactly opposite to that of xp, and ii) no distortion to the

phase of xp is introduced. It is very important to make sure

that the phase of the clipped signal is undistorted, as will be

seen later.

This hard clipping in (1) is equivalent to adding a sparse

signal c to the original time domain signal x with active ele-

ments only where clipping has occurred, i.e.,

xp = x+ c, (2)

where c represents the distorting signal due to clipping. This

equation could be equivalently written as

xp = FHX + c. (3)

Before OFDM signal’s transmission, a cyclic prefix is ap-

pended to the time domain signal. This cyclic prefix portion

is removed at the receiver, and FFT is performed for the re-

maining signal. The received signal is

y = Hxp + z (4)

where z is a zero-mean i.i.d complex Gaussian noise with

variance σ2
n. H is the circulant channel matrix by virtue of

cyclic prefix insertion and removal (the channel impulse re-

sponse is assumed to be known). The received signal is now

transformed into the frequency domain. Hence, at the receiver

(the channel matrix can be decomposed as H = FHΛF)

Y = ΛXp +Z = Λ(X + C) +Z (5)

where Z = Fz, and Λ is a diagonal matrix with channel

impulse response in frequency domain being in the diagonal.

Let us assume that the OFDM system has N subcarriers

(tones), out of which K carriers are used for data transmission

and the remaining M ≪ K carriers1 are reserved for sparse

signal recovery at the receiver. Let, Sc denotes an N × N

1These few frequencies are enough to estimate c. For more details in

sparse signal reconstruction from incomplete frequency information, see [9]

[10].

binary selection matrix with 1’s only at M locations along

the diagonal determined according to the reserved carriers.

We proceed by projecting Y onto the reserved carriers

subspace (Sc). This gives us

ScY = Sc (Λ(X + C) +Z)

= ScΛC + ScZ , or

Y ′ = Ψc+Z ′, (6)

where Y ′ = ScY , Ψ = ScΛF, and Z ′ = ScFz. Note

that, projecting X onto Sc results in a zero vector. The only

unknown in the resulting equation is c. Note that, since Sc

is a diagonal selection matrix, it contains (K = N − M )

zero rows corresponding to data subspace. Therefore, there

are K zero entries in Y ′ which we remove to get a new M -

dimensional vector Y ′
m. Similarly the new M ×N measure-

ments matrix is Ψm and Z ′
m is white Gaussian noise with

Z ′
m ∼ CN (0, σ2

nI). Therefore (6) becomes

Y ′
m = Ψmc+Z ′

m, (7)

which is a set of M equations and thus represents projection

of the N -dimensional sparse signal onto a basis of dimension

much smaller (M ≪ N ).

Recall that for clipping at the ith entry, c(i) = −(x(i) −
γ). This implies that the phase of the nonzero elements of c

is always opposite to that of the corresponding elements of

the clipped signal xp. Since the phase can be deduced from

xp, we need to estimate only the magnitudes and locations

of the non-zero elements of the sparse signal. Therefore the

modified model becomes (note that, c is now just a vector of

magnitudes)

Y ′
m =ΨmΘcc+Z ′

m, (8)

where Θc is a matrix containing the anti-phases of signal xp

along the diagonal, i.e.

Θc = −Θxp
= −diag{ejθxp(1) , ejθxp(2) , ..., ejθxp(N)}.

where diag{a, b} =

[

a 0
0 b

]

.

Combining Ψm and Θc we get

Y ′
m =Φmc+Z ′

m, (9)

where Φm = ΨmΘc. Since all parameters except c are com-

plex in the above equation, we can split the complex equation

into real and imaginary parts as follows

[

Re(Y ′
m)

Im(Y ′
m)

]

=

[

Re(Φm)
Im(Φm)

]

c+

[

Re(Z ′
m)

Im(Z ′
m)

]

, or

Ȳ = Φ̄c+ Z̄. (10)

where Re(a), Im(a) denote operations of extracting, respec-

tively, the real and imaginary components of complex valued

a.
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Unlike (9) which is a system of M equations, we now have

2M equations to estimate a real unknown vector c of dimen-

sion N . This results in a better estimation. We aim to recover

c using this underdetermined system and to do so we pursue a

minimum mean-square error (MMSE) estimate which is dis-

cussed in Section 3.

Once we evaluate an estimate of c (i.e., ĉ), then using

phase information, we can subtract it from the estimated

clipped signal x̂p to get an estimate of the original signal x,

see (2). The time domain clipped signal can be estimated by

equalizing the channel effect. Thus,

x̂p = FH(Xp +Λ−1Z)

= xp + e, (11)

where e = FHΛ−1Z represents the error in estimating xp.

This explains the process of recovering the transmitted

signal while avoiding the high PAPR problem. Now, we

present the algorithm and its proposed modified version for

the recovery of sparse signal c.

3. RECOVERY ALGORITHM

A tractable Bayesian approach to recover the magnitude of

c from (10) would normally impose an assumption that the

active elements of c are drawn from a Gaussian distribution.

However, this is not the the case for the clipping signal. Re-

call from (1) and (2) that c is composed of the difference be-

tween a constant value γ and a Rayleigh distributed signal

(the amplitude of x follows Rayleigh distribution [3]). Hence,

the nonzero elements of c are certainly not Gaussian. There-

fore, we pursue a Bayesian approach for the estimation of c

which does not make any assumption about the statistics of

the nonzero elements of c.

We proceed by finding a MMSE estimate of c given Ȳ as

follows:

ĉmmse

△
=E[c|Ȳ ] =

∑

S
p(S|Ȳ)E[c|Ȳ ,S], (12)

where the sum is executed over all 2N possible support sets

S of c. If we know the actual support S , the linear model in

(10) becomes,

Ȳ = Φ̄ScS + Z̄,

where Φ̄S is a matrix formed by selecting columns of Φ̄ in-

dexed by the support S , while cS is formed by selecting en-

tries of c indexed by support S . Since the distribution of c

is unknown, computing E[c|Ȳ ,S] is impossible. Therefore,

instead we use the best linear unbiased estimate (BLUE) as

follows

E[c|Ȳ ,S] = (Φ̄H

SΦ̄S)
−1Φ̄H

SȲ .

It remains to evaluate the posterior p(S|Ȳ) and the sum

in (12). Using Bayes rule we can write

p(S|Ȳ) =
p(Ȳ |S)p(S)

p(Ȳ)
, (13)

where p(Ȳ) is common to all posteriors, and therefore, could

be ignored. A normal Bayesian approach would consider that

the elements of c are activated according to a Bernoulli dis-

tribution with success probability ρ. However, note that, the

closer the clipped signal xp to the threshold the more prob-

able it is to be clipped. Therefore, we see that using ρ as

success probability for each location is not a good idea. Thus,

we modify this approach such that the probability of success

of some entries are enhanced over the others. To do so, we de-

fine w as the difference between the amplitude of estimated

clipped signal x̂p and threshold γ, i.e., w = γ − |x̂p|, and

use it as a weighted vector. Therefore, it is obvious that we

assign higher weights to locations where the abovementioned

difference is small. Hence, we have 2.

p(S) =

N
∏

i

pi , for all i = 1, 2, ... , N (14)

where pi = ρ e−w(i) (note that, pi’s are normalized such that

the maximum value is 1).

By this modification, we increased the probability of those

elements of c where x̂p is close to the threshold γ. Note that,

ρ represents the probability of an occurrence of a non-zero

value at a location in c which in our case translates to the

probability of a clipping occurrence.

We are left with the likelihood p(Ȳ |S). Since, cS is

not Gaussian, determining p(Ȳ |S) is in general very dif-

ficult. To go around this, we note that Ȳ is formed by a

vector in the subspace spanned by the columns of Φ̄S plus

a Gaussian noise vector, Z̄ . This motivates us to elim-

inate the non-Gaussian component by projecting Ȳ onto

the orthogonal complement space of Φ̄S . This is done by

multiplying Ȳ by the projection matrix P⊥
S = I − PS =

I− Φ̄S
(

Φ̄
H

SΦ̄S
)−1

Φ̄
H

S . This leaves us with P⊥
S Ȳ = P⊥

S Z̄ ,

which is Gaussian with a zero mean and covariance

K = E[(P⊥
S Z̄)(P⊥

S Z̄)H]

= P⊥
SE[Z̄Z̄H]P⊥

S
H

= P⊥
S σ

2
nP

⊥
S
H

= σ2
nP

⊥
S . (15)

Thus we have,

p(Ȳ |S) ≃
1

√

(2πσ2
n)

M
exp

(

−
1

2

(

P⊥
S Ȳ

)H

K−1
(

P⊥
S Ȳ

)

)

.

(16)

2For example, p(S) of coefficients 1 and 2 being the only active

elements is p(S) = p1p2

∏̇N

k 6=1,2(1− pk), while in the i.i.d case it is

p(S) = ρ
2(1− ρ)N−2.
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Simplifying and dropping the pre-exponential factor yields,

p(Ȳ |S) ≃ exp

(

−
1

2σ2
n

∥

∥P⊥
S Ȳ

∥

∥

2
)

. (17)

Substituting (14) and (17) into (13) finally yields an expres-

sion for the posterior probability. In this way, we have all

the ingredients to compute the sum in (12). Computing this

sum is a challenging task when N is large because the number

of support sets can be extremely large and the computational

complexity can become unrealistic. To have a computation-

ally feasible solution, this sum can be computed over a few

support sets corresponding to significant posteriors. Let Sd

be the set of supports for which the posteriors are significant.

Hence, we arrive at an approximation to the MMSE estimate

given by,

ĉammse =E[c|Ȳ ] =
∑

S∈Sd

p(S|Ȳ)E[c|Ȳ ,S] (18)

We follow the method mentioned in [11, 12] where they de-

vised a greedy algorithm to find a subset of the dominant sup-

port Sd. Noteworthy, the weighted version of p(S) in (14)

also helps to find the dominant support faster than the un-

weighed version.

Note that, the Bayesian approach, discussed above, re-

quires information about the sparsity rate (ρ), the noise vari-

ance (σ2
n) and the threshold (γ), to recover c. However, ex-

act values of these parameters may not be available at the re-

ceiver. Therefore, there should be a way to recover c perfectly

even in the presence of rough estimates. We start with initial

estimates of required parameters and estimate c. This esti-

mate is in turn used to refine the abovementioned parameters

which are then used to get a better estimate of c again. This

process is repeated a number of times. Specifically, the refine-

ment process is continued until the percentage change in the

two consecutive estimates of sparsity rate (ρ̂) becomes less

than 2%. An algorithmic description of the recovery process

that we follow is provided in Table 1. A discussion about

the computational complexity of the proposed method can be

seen in [12].
4. SIMULATION RESULTS

For numerical implementation N = 512 subcarriers were

used, where 20% of them were reserved randomly for clip-

ping signal recovery (M = 20% of N ). It has been shown

in [13, 14] a small number of random measurements can re-

cover a sparse signal with high accuracy from a fixed inco-

herent basis. Data is generated from a 64-QAM constellation

(L = 64) and i.i.d additive white Gaussian noise (AWGN) is

generated with 30dB SNR. We consider a frequency-selective

fading channel, with 7-taps, which is assumed to be known at

the receiver. The two performance metrics considered are bit

error rate (BER) and average run-time. All results are ob-

tained by averaging 200 independent realizations.

We used two Bayesian matching pursuit algorithms for

sparse signal recovery, the fast Bayesian matching pursuit

(FBMP) [11] and the support agnostic Bayesian matching pu-

1) estimate x̂p = FHΛ−1Fy

2) γ̂ = max(x̂p).
3) σ̂2

n = var(Ȳ).
4) w = γ̂ − |x̂p|.

5) ρ̂o = Q

(

γ̂−µ
σ

)

, an initial estimate, where µ and σ are the

mean and standard deviation of x̂p, respectively.

6) i = 0, repeat

7) pk = ρ̂i e
−w(k), k = 1, 2, ... , N.

8) Compute ĉammse and ρ̂i+1 using the technique discussed

in [12]

9) until
(

|ρ̂i−ρ̂i−1|
ρ̂i−1

< 0.02
)

10) ĉ = Θc|ĉammse|
11) x̂ = x̂p − ĉ

Table 1: Proposed signal recovery algorithm

ruist (SABMP) [12]. In addition, we also estimated c us-

ing ℓ1-optimization using CVX, a package for specifying and

solving convex programs [15]. All these techniques are used

to estimate the sparse signal from the system of equations

given in (7). We compared the performance of these methods

with the performance of our enhanced version (i.e., weighted

and phase augmented (WPA)-SABMP), which is able to uti-

lize the phase and clipping probability to solve for c. We

also compare the performance of these methods to oracle-LS

where the receiver knows the actual support of c and least-

square estimate is used.

4.1. Experiment 1

In this experiment, we study the performance of the above-

mentioned algorithms with respect to the varying clipping

threshold γ. Specifically, we plot BER versus γ. In this ex-

periment, exact values of the required parameters (i.e., spar-

sity rate ρ, noise variance and signal variance) were provided

to the Bayesian estimation algorithms (SABMP and WPA-

SABMP do not require signal variance).

Fig. 1 shows the superior performance of WPA-SABMP

over other algorithms. We can also see that, for high γ (i.e.,

high sparsity) all algorithms have similar performance. Please

note that, in all of the figures as γ increased from 10.13 to

11.43, sparsity rate decreased from 0.086 to 0.045.

4.2. Experiment 2

The performance of the algorithms, when the exact parameter

values are unknown are studied in this experiment. The ini-

tial estimates provided to the Bayesian algorithms are chosen

significantly away from the true values. The proposed WPA-

SABMP algorithm is capable of refining these estimates in an

iterative manner as mentioned in Table 1. The BER perfor-

mance of WPA-SABMP (without refinement), (with refine-

ment) and ℓ1-optimization are plotted in Fig. 2.

As expected, WPA-SABMP (refined) performed bet-

ter than its non-refined version. We also note that even

with rough initial estimates, the non-refined WPA-SABMP

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

10 10.5 11 11.5

0.01

0.02

0.03

0.04

0.008

0.006

γ

B
E

R

N=512, Reserved Tones M=20% of N

 

 

NO Estimation

FBMP

SABMP

l
1
 optimization

WPA−SABMP

Oracle−LS

Fig. 1: BER versus γ when using exact parameter values

WPA-SABMP WPA-SABMP

(refined)

ℓ1-Opt.

Run time (s) 0.0101 0.3339 1.6338

Table 2: Average run-time when using rough estimated pa-

rameters in experiment 2.

performed better than ℓ1-optimization. As compared to ℓ1-

optimization programming, the WPA-SABMP (refined) al-

gorithm requires much less time for estimation. It is worth

mentioning that, by the virtue of the weighted p(S), the WPA-

SABMP algorithm requires less time than plain SABMP as it

is able to find the correct support quickly (see the discussion

after (18)).
5. CONCLUSION

In this paper, we present a robust Bayesian algorithm for clip-

ping signal recovery to reduce PAPR in OFDM. The proposed

method requires no information at the receiver about the noise

variance, clipping signal statistics and the clipping threshold

and can estimate these required parameters. In addition, the

algorithm utilizes and exploits the prior information of clip-

ping signal which can also be obtained from the received sig-

nal. The clipping signal estimates can be improved further by

refining the estimates of parameters.
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