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ABSTRACT
In the field of recursive estimation, the choice of the state model

has a significant impact on the algorithm performance. Multiple

Model (MM) approaches partly address this issue. However, the

improvement over a single-model based estimator directly de-

pends on the considered model set. It was theoretically shown

that using either too many or too few models can degrade the

estimation accuracy. In addition, the diversity of the selected

models plays a crucial role. The contribution of this paper is

twofold. 1/ We propose to use the Jeffreys divergence (JD) to

measure the degree of mismatch between two models. We de-

rive its recursive expression when the state vector is a priori
modeled as a Markov chain. Then, we focus our attention on

tracking applications and provide a detailed analysis of the JD

between classical motion models. 2/ We investigate the impact

of the similarity between the set of possible models on the esti-

mation error of a MM algorithm. This survey can hence serve

as a guideline for model set design.

Index Terms— Jeffreys Divergence, IMM, Kalman filter-

ing, Model selection.

1. INTRODUCTION

In the field of signal processing, recursive estimation can be

based on adaptive filters (LMS, etc.), or optimal filters such as

H∞ filter and Bayesian approaches using Kalman filter or par-

ticle filters. However, for these latter methods, a priori model-

ing the system plays a key role. Hence, the practitioner has to

make assumptions regarding the way the state variables have to

evolve [1]. It strongly impacts the estimator performance. To

relax these assumptions on the a priori model, multiple model

(MM) based methods have been considered and three genera-

tions have been proposed. In the first one, several estimators,

each one based on a specific a priori model, are run in parallel,

but no interaction between them exists. Then, interactive mul-

tiple model (IMM) was introduced [2]. It is known to be effi-

cient for a small set of models. To address estimation problems

requiring large model sets, variable structure IMM (VS-IMM)

and its variants are considered [3]. In this third MM generation,

the estimator number varies in time. The unlikely models are

removed while those which could be considered are activated.

Hence, subsets of models and ”adjacency” between them must

be defined by the practitioner.

For the last years, these approaches have been used in a wide

range of applications: from VOIP speech enhancement to hu-

man motion tracking, from car motion tracking in intelligent

transport systems and lane changes in highways to multiple ma-

neuvering targets in radar processing, from GPS localization to

channel estimation in mobile communication systems, etc.

However, few studies have been carried out on the relevance of

MM algorithms regarding a single-estimator based algorithm.

In [4], Kirubarajan and Bar-Shalom have proposed to compare

the IMM and the Kalman filter in some situations. More gener-

ally, there are still some open topics: how to select the models?

How many models should be considered? How to define the

adjacent models in the 3rd generation of MM? Answering the

above questions is all the more difficult as the decision may de-

pend on the number of available samples.

In this paper, we focus our attention on linear Gaussian estima-

tion problems. Furthermore, we investigate the application to

target tracking. Our contribution is twofold:

1/ We propose a method to evaluate the similarity between two

state models. For this purpose, we suggest computing the JD

between the joint distributions of successive values of the state

vector based on two different models. It should be noted that

we derive its analytical recursive expression. Since the JD is the

symmetric version of the Kullback-Leibler (KL) divergence, we

first detail the computation of the latter.

2/ Then, the special case of motion models for target tracking

is investigated. We study the influence of the motion model pa-

rameters on the JD. Then, we analyze the relevance of the IMM

based estimator depending on the JD between the set of com-

peting state models.

The remainder of this paper is organized as follows: in sec-

tion 2, after recalling the linear state space representation of the

system, we recursively compute the JD. In section 3, we focus

our attention on object tracking. We give the state space repre-

sentation for the uniformly accelerated motion (UAM) and the

Singer motion model and present the JD we obtain in various

cases. In section 4, we analyze the performance of the IMM es-
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timator with regards to the JD between the competing models.

We also compare the IMM with a single-model based Kalman

filter, by looking at the root mean square error (RMSE) between

the true state vector and its estimation. Conclusions and per-

spectives are finally drawn in section 5.

2. RECURSIVE COMPUTATION OF THE JD

Bayesian recursive estimation techniques are based on the

so-called state space representation of a system. The latter is

composed of a state model that describes the evolution of the

state vector over time, and an observation model that relates

the state vector to the observations. When considering I mod-

els in a MM approach, we suggest introducing the subscript

i = 1, ..., I to make reference to the ith model. Thus one has:

xk+1 = Φixk + uk (1)

yk = Hixk + bk (2)

where xk is the state vector at time k, Φi is the transition matrix,

uk is the model noise assumed to be zero-mean Gaussian with

covariance matrix Qi. yk denotes the observation and Hi is

the observation matrix. In addition, bk is a zero-mean Gaussian

noise with covariance matrix Ri and is uncorrelated with uk.

For the sake of simplicity, the time-invariant system is ad-

dressed, but the approach could be easily generalized to the

time-varying case.

To measure the similarity between two state models, we pro-

pose to compute the JD between the joint distribution of the

N + 1 successive values of the state vector for the 1st model

and the 2nd model respectively. We show that the latter admits

a recursive expression.

In the following, let us denote x0:N = (x0, ..., xN ) the set of

values of the state vector from time 0 to time N . In addition

p1(x0:N ) and p2(x0:N ) are respectively the joint distributions

of the N + 1 successive values of the state vector for the 1st

and the 2nd models. By definition, the expression of the KL

divergence between both state models is:

KL(p1(x0:N ), p2(x0:N )) =

∫
x0:N

p1(x0:N ) log
p1(x0:N )

p2(x0:N )
dx0:N

(3)

Then, as x0:N is a markov process, p1(x0:N ) and p2(x0:N )
factorize as follows, for i = 1 or 2:

pi(x0:N ) = pi(x0:N−1)pi(xN |xN−1) (4)

By inserting (4) in (3), one has:

KL(p1(x0:N ), p2(x0:N )) =∫
x0:N−1

p1(x0:N−1) log
p1(x0:N−1)

p2(x0:N−1)

∫
xN

p1(xN |xN−1)dxNdx0:N−1

+

∫
x0:N

p1(x0:N−1)p1(xN |xN−1) log
p1(xN |xN−1)

p2(xN |xN−1)
dx0:N (5)

As one has
∫
xN

p1(xN |xN−1)dxN = 1 , it follows:

KL(p1(x0:N ), p2(x0:N )) = KL(p1(x0:N−1), p2(x0:N−1)) +G

where G is the 2nd term of the addition in (5). At that stage, let

us focus on that latter. After integrating out x0:N−2, G becomes:

G =

∫
xN−1:N

p1(xN ,xN−1) log
p1(xN |xN−1)

p2(xN |xN−1)
dxN−1:N (6)

Then the above equation (6) can be reformulated as follows1:

G =

∫
xN−1

p1(xN−1)×
∫
xN

p1(xN |xN−1) log
p1(xN |xN−1)

p2(xN |xN−1)
dxNdxN−1

= Ep1(xN−1)[KL(p1(xN |xN−1), p2(xN |xN−1)] (7)

In (7), p1(xN |xN−1) and p2(xN |xN−1) are hence useful. In

our case, given (1) for i = 1 or 2, one has:

pi(xN |xN−1) ∼ N (ΦixN−1, Qi) (8)

Then, using the formula of the KL divergence between two mul-

tivariate normal densities2 N1 and N2, it ensues:

G =

∫
1

2
[Tr(Q−1

2 Q1)+[(Φ2−Φ1)xN−1]
TQ−1

2 [(Φ2−Φ1)xN−1]

− l − log
detQ1

detQ2
] p1(xN−1)dxN−1 (9)

If one introduces ΔΦ as Φ2 − Φ1, this leads to:

G =
1

2
[Tr(Q−1

2 Q1)− l − log
detQ1

detQ2
+

∫
[ΔΦxN−1]

TQ−1
2 [ΔΦxN−1]p(xN−1)dxN−1] (10)

After rearranging the terms and integrating, we obtain:

G =
1

2
[Tr(Q−1

2 Q1)− l − log
detQ1

detQ2

+ Ep1(xN−1) [Tr(xN−1x
T
N−1(ΔΦTQ−1

2 ΔΦ))]] (11)

Then, by linearity of the trace operator, we have:

G =
1

2
[Tr(Q−1

2 Q1)− l − log
detQ1

detQ2

+ Tr [P 1
N−1(ΔΦTQ−1

2 ΔΦ))]] (12)

1Ep1(xN−1)
denotes the expectation over p1(xN−1).

2The KL divergence between two multivariate normal densities is:

KL(N1,N2) =
1

2
[Tr(Q−1

2 Q1)+

(μ2 − μ1)
TQ−1

2 (μ2 − μ1)− l− log
detQ1

detQ2
]

where μ1, μ2 and Q1, Q2 are the means and covariances of both densities, l is

the dimension of the state vector and Tr is the trace of the matrix.

2
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where the matrix P 1
N−1 satisfies P 1

N−1 = Ep1(xN−1)

[
xN−1x

T
N−1

]
.

Given (1), it can be computed recursively as follows:

P 1
N−1 = Φ1P

1
N−2Φ

T
1 +Q1 (13)

By combining (2), (12) and (13), KL(p1(x0:N ), p2(x0:N ))
can be recursively computed. As one can operate similarly for

KL(p2(x0:N ), p1(x0:N )), we can derive the JD from the KL:

JD(p1(x0:N ), p2(x0:N )) = KL(p1(x0:N ), p2(x0:N ))

+KL(p2(x0:N ), p1(x0:N )) (14)

Thus, one deduces:

JD(p1(x0:N ), p2(x0:N ))

= JD(p1(x0:N−1), p2(x0:N−1)) +A+B (15)

where:

A = −l +
1

2
[Tr(Q−1

1 Q2) + Tr(Q−1
2 Q1)]

B =
1

2
[Tr [P 1

N−1(ΔΦTQ−1
2 ΔΦ)]+Tr [P 2

N−1(ΔΦTQ−1
1 ΔΦ)]]

In (15), the term A is constant, whereas B evolves in time. In

the sequel, we take advantage of the recursive equation (15) to

illustrate the influence of the terms A and B. For this purpose,

we study motion models in the field of object tracking.

3. JD COMPUTATION FOR OBJECT TRACKING

3.1. System presentation

First, let us recall the UAM and the Singer motion model. Given

(1) and (2), the state vector satisfies in both cases:

xk = [xk, ẋk, ẍk]
T (16)

where xk denotes the position, ẋk the velocity and ẍk the accel-

eration.

In addition, the transition matrices and the observation matrices

are defined as follows:

ΦUAM =

⎡
⎣1 T T 2/2
0 1 T
0 0 1

⎤
⎦ (17)

where T is the sampling period.

ΦSin =

⎡
⎣1 T 1

α2 (αT − 1− ρ)
0 1 1

α (1− ρ)
0 0 ρ

⎤
⎦ (18)

where ρ = e(−αT ) and α = 1
τm

with τm is the Singer time

constant. The covariance matrices of both motions can be re-

spectively defined as:

QUAM = σ2
UAM

⎡
⎣T

5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

⎤
⎦ (19)

QSin = 2ασ2
Sin

⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ (20)

where σ2
UAM and 2ασ2

Sin are the jerk variances, and:

q11 =
1

2α5
(2αT − 2α2T 2 + 2α3T 3/3− 4αTρ− ρ2 + 1)

q12 = q21 =
1

2α4
(α2T 2 + 1 + ρ2 + ρ(2αT − 2)− 2αT )

q22 =
1

2α3
(2αT − 3 + 4ρ− ρ2)

q13 = q31 =
1

2α3
(1− 2αTρ− ρ2)

q23 = q32 =
1

2α2
(1− ρ)2 and q33 = − 1

2α
(ρ2 − 1)

In the next sub-section, let us compare various models and ana-

lyze the influence of T , τm, σ2
Sin and σ2

UAM on the JD.

3.2. JD in various cases

Two cases are investigated:

1/ Let us compare two UAMs defined by two different jerk

variances σ2
UAM,i, i = 1 or 2. In this case, ΔΦ = 0. According

to (15), the JD is hence a linear expression of the number of

samples. It only depends on the quantity A which is the slope.

Given (19), it can be expressed by means of the jerk variance

ratio. Indeed, the higher the ratio is, the higher the slope of the

curve is, as confirmed by Fig. 1. In addition, if the variance

ratio is equal to 1, then A = 0; as B is also equal to 0, the

JD is necessary null. It should be noted that when comparing

two UAM motions, as the JD only depends on the jerk variance

ratio, there is an infinity of set of jerk variances that leads to the

same JD.
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Fig. 1. Influence of the jerk variance ratio for UAMs on the JD

2/ Let us now compare a UAM and a Singer motion. In that

case ΔΦ �= 0. As a consequence, the JD is a non-linear expres-

sion of the motion sample number. Nevertheless, depending on

the parameters such as T , τm, σ2
Sin and σ2

UAM , the quantity B
may be negligible compared to A. Let us look more carefully

3
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at the influence of these parameters on the JD:

Influence of the jerk variance ratio: we have studied various

cases. In this paper and without loss of generality, let us

set the model parameters as follows: T = 1s, τm = 30s,

2ασ2
Sin = 0.1g, where g denotes the gravity constant equal

to 9.81m.s−2. The jerk variance ratio evolves from 1 to 10.

From Fig. 2, the JD increases with both the variance ratio and

the number of samples. With this choice of parameters, ΔΦ is

close to zero, hence B is rather negligible compared to A. This

leads to a quasi-linear behavior of the JD.
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Fig. 2. Influence of the jerk variance ratio for a UAM and a

Singer model on the JD

Influence of τm: here T = 1s, σ2
UAM = 2ασ2

Sin = 0.1g. The

value of τm evolves from 1 to 5s. The JD increases with both the

number of samples and the value of τm due to the contribution

of the terms A and B. When τm becomes high, the JD is close

to zero. This result confirms what is commonly known about

UAM and Singer models. Indeed, they are embedded models:

for a high value of τm, both Singer transition and covariance

matrices converge to the ones of the UAM [3].
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Fig. 3. Influence of the Singer model constant on the JD

Influence of T : here σ2
UAM = 2ασ2

Sin = 0.1g, τm = 30s.

Due to (17) and (18), the higher T is, the higher the JD is. See

Fig. 4. Moreover, if the value of T is low, ΔΦ is nearly zero,

then the JD becomes almost linear. In addition, A tends to

−l + l
2 (

σ2
UAM

2ασ2
Sin

+
2ασ2

Sin

σ2
UAM

). So, in our case A tends to zero and

the JD is close to zero. If T increases, ΔΦ is non-negligible,

the JD becomes slightly non-linear.
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Fig. 4. Influence of the sampling period on the JD

In the next section, we take advantage of the previous study

to discuss the choice of an IMM estimator over a Kalman filter,

as well as for model set design when using the IMM.

4. JD VS IMM

This section addresses the issue of designing an efficient esti-

mation algorithm to retrieve an object trajectory, based on the

preliminary study on the JD in section 3. We consider two

simulation scenarios.

In the 1st place, our purpose is to investigate when it is relevant

to use an IMM instead of a standard Kalman filter. Various

cases are studied and differ by the JD between the actual mo-

tion models of the trajectory we wish to estimate. The latter are

assumed to be known, which is not realistic in practice. Note

that this is a complementary study to the one proposed in [1].

In the 2nd place, we analyze the impact of the JD between the

IMM models when we have few information on the unknown

trajectory.

First scenario. The reference trajectory (denoted Ref.) is com-

posed of N = 500 samples and switches between two models,

one being a UAM and the other a Singer model. The sampling

period is T = 1s and the probability of a motion model change

at a given time instant is set to 0.05. The Singer model parame-

ters are fixed and equal to σSin = 0.1g and τm = 60s whereas

the standard deviation σUAM is made to vary so that different

JD between both models can be considered. Only a noisy ob-

servation of this trajectory is available where the measurement

noise variance is R = 200. Then, an IMM based exactly on

the above-mentioned models and transition probabilities is im-

plemented to carry out the estimation. It is compared to two

4
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Kalman filters that are independently run by the practitioner.

One is based only on the UAM state model, and denoted Kal.
1, whereas the other is based only on the Singer model, and

referred to as Kal. 2. The estimation accuracy is evaluated by

computing the RMSE by averaging over 200 realizations of the

reference trajectory and the measurement noise. The results are

reported in Table 1 where the parameters of the motion mod-

els as well the corresponding JD between them are given in the

first rows. The value that serves as an indicator for the JD is

taken arbitrarily 20 samples after the beginning of the motion.

It should be noted that, as a reference, we have also used the 3
algorithms to estimate trajectories generated entirely by a single

model: either a UAM model (denoted UAM traj.) or a Singer

model (denoted Sin. traj.).
By analyzing Table 1, unsurprisingly it appears that for single-

model based trajectories (namely UAM traj. and Sin. traj.), the

Kalman filter based on the proper model outperforms the other

algorithms. However, the IMM yields close results. It should be

noted that when σ2
Sin increases, the RMSE also increases due

to a higher uncertainty on the unknown trajectory. As for Ref.,
we can observe that, whatever the JD, the IMM is more accu-

rate than the single-model based Kalman filters. Furthermore,

Kal. 1 is always more accurate than Kal. 2. Indeed, the Singer

model is embedded in the UAM. Thus, although Kal. 1 is out-

performed by Kal. 2 for Singer motion phases, its error does not

grow unbounded. Last but not least, the difference between the

RMSE of the IMM and Kal. 1 is all the more significant as the

JD is high. As a conclusion, if the JD between the switching

state models is small, the IMM does not improve the estimation

compared to a standard Kalman filter. On the contrary, the IMM

becomes more relevant as the JD is significant.

σUAM (×g) 0.012 0.041 0.108 0.237 0.471

σSin(×g) 0.1 0.1 0.1 0.1 0.1

JD 20 100 1000 5000 20000

UAM Kal. 1 4.92 5.97 7.18 8.55 10.53

traj. Kal. 2 5.13 8.15 19.08 37.78 75.35

IMM 4.98 6.05 7.29 8.68 10.70

Sing. Kal. 1 5.26 5.50 6.33 7.37 8.53

traj. Kal. 2 5.12 5.12 5.12 5.12 5.12

IMM 5.15 5.28 5.66 6.15 6.57

Kal. 1 5.07 5.69 6.79 8.03 9.76

Ref. Kal. 2 5.09 6.11 10.92 21.74 43.78

IMM 5.02 5.60 6.61 7.69 9.17

Table 1. RMSE between the state vector and its estimate for

500 samples, averaged over 200 Monte Carlo simulations.

Second scenario. We generate a trajectory as a sequence

of 5 different Singer models defined by the same time con-

stant τm = 1s and their respective acceleration variances

σ2
Sin = ([0.1 0.3 0.05 0.2 0.03] × g)2. Each motion phase is

composed of 100 samples, hence the simulation is 500 samples

long. Parameters are set as follows: T = 1s and R = 200. For

the tracking, it is assumed that we have no precise information

on the target motion. The purpose is to study the performance

of the IMM estimator for various sets of competing models

corresponding to different JD. For the sake of simplicity, we

consider an IMM algorithm using only two Singer models with

the true value τm = 1s. Thus, only the model variances are

undefined. For the first model, we arbitrarily set the variance to

a low enough value in order to represent low maneuvering mo-

tions, e.g. σ2
Sin,1 = (0.04× g)2. Conversely, the second-model

variance σ2
Sin,2 is made to vary and we compute the corre-

sponding JD. To evaluate the performance of the estimator, we

figure out the RMSE over 200 realizations of the measurement

noise. According to Table 2, the RMSE decreases with the JD

until a minimum value, then increases again. This minimum

value is reached when σ2
Sin,2 is close to the upperbound of the

theoretical variance values, i.e. (0.3× g)2. In the general case,

it appears that it is better to overestimate the model variance

rather than to underestimate it. As a consequence, we suggest

the IMM user to choose models with a high enough JD, corre-

sponding to sufficient dissimilarities. In this way, the estimator

can capture a greater variety of motions.

σSin,2(×g) 0.10 0.20 0.30 0.40 0.50 0.70
RMSE 6.37 5.71 5.73 5.80 5.88 5.96

JD 132 691 1628 2940 4628 9128

Table 2. RMSE between the state vector and its estimate for

500 samples, averaged over 200 Monte Carlo simulations.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed an approach to evaluate the similarity

between two state models. For this purpose, we derived a recur-

sive expression of the JD and we applied in the context of target

tracking. Our first simulation results showed that the JD is a

relevant indicator with regards to the choice of the estimation

algorithm as well as the design of the model set. We are cur-

rently carrying out a more comprehensive study to derive more

precise guidelines for the practitioner. Other applications will

be studied. Finally, we plan to also investigate the recursive JD

expression for state vectors of different sizes.
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