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ABSTRACT

In this paper, we present, a new method for the Blind Iden-
tification and Source Separation of a convolutive Multi-Input
Multi-Output (MIMO) system driven by multi-level inputs.
The method takes advantage of the special properties of the
observation differences distribution. We show that a specific
set of differences can be used to reconstruct the mixing op-
erator. Exhaustive search of the observation symbols yields
sources separation. The method can be coupled with a simple
clustering technique in order to treat noisy cases. Results on
both noiseless and noisy scenarios show the efficiency of our
approach.

Index Terms— Blind Idendification, Blind Source Sepa-
ration, MIMO system, PAM modulation

1. INTRODUCTION

Blind Source Separation (BSS) is the task of recovering the n
unobserved sources from the m observation signals without
any quantitative information of the mixing procedure. The
BSS methods can be divided according to the model mix-
ing operator into linear mixture BSS ones (also known as in-
stantaneous BSS) and convolutive mixture BSS ones (also re-
ferred to as multichannel blind deconvolution/equalization).
Higher-Order Statistics (HOS) based methods and especially
FastICA [1] has solved the problem of linear BSS in its gen-
eral case (n = m independent sources), by maximizing the
inter-signal mutual independence. Current research on the
field is interested in ill-posed cases of the same scenario,
involving under-determined systems [2], time-varying filters
[3], sparse [4] or statistically dependent [5] sources. The
Blind Deconvolution scenario is more complex to treat and
the papers attacking the problem are fewer than the ones treat-
ing the linear model. The first attempts were aiming at creat-
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Social Fund ESF) and Greek national funds through the Operational Pro-
gram ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALES. Investing in
knowledge society through the European Social Fund.

ing overdeterming systems by transforming the multichannel
system into a set of simpler Single-Input Multi-Output sys-
tems [6]. Chen in [7] investigated the special case of i.i.d.
sources using HOS. The treatment of colored sources have
been explored using both Second-Order Statistics (SOS) [8]
and HOS [9].

Alternatively, the linear or convolutional BSS problem
has been studied from a geometric point of view. Typically
these methods exploit the geometric properties of the observa-
tions distribution. The problem was investigated by Puntonet
in et al. [10] for the separation of two sources, by finding the
angle between the slopes of the observations scatter plot. A
clustering based approach was introduced by Babaie-Zadeh
et al. [11]. Diamantaras et al. in [12] introduced a novel
method for linear MISO systems driven by binary antipodal
sources. The model filter is recursively deflated, yielding in
the final step: the filter and the source signals. The method
was extended to the convolutive case in [13].

In this paper, we extend the basic concepts introduced in
[14] to the MIMO case. We explore the special characteristics
of the probability distribution of the observation differences.
The most probable differences relate to the columns of the
system transfer matrix and from those we can estimate the
unknown mixing filters.

The paper is organized as follows: Section 2 gives the
problem formulation. In Section 3 we explore the indetermi-
nacies of the problem. The proposed solution is presented in
Section 4 for the noiseless case and in Section 5 for the noisy
case. Results on various simulations can be found in Section
6. We finally conclude in Section 7.

2. PROBLEM FORMULATION

The MIMO convolutional system with m observation signals
and n input signals passing through an m × n, L-tap filter
hp,q(l) is defined as:

xp(k) =
n∑

q=1

L−1∑
l=0

hp,q(l)sq(k − l), p = 1, · · · ,m. (1)
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If the sources are Pulse Amplitude Modulated (PAM) with
M levels, then each sample sq(k), takes values from a dis-
crete set V = {0, · · · ,M − 1}.

By stacking column vectors xp(k) containing time win-
dows of length W of the output signals xp

xp(k) = [xp(k), · · · , xp(k −W + 1)]T ,

into a “tall” vector x(k)

x(k) = [x1(k)
T , · · · ,xm(k)T ]T , (2)

we transform the system model equation Eq. (1) into the fol-
lowing equivalent matrix form:

x(k) = Hs(k), k = 1, · · · ,K (3)

where

H =

 H̄1,1 · · · H̄1,n

...
...

H̄m,1 · · · H̄m,n

 , (4)

with H̄p,q ∈ IRW×N , N = W + L− 1,

H̄p,q =

 hp,q(0) · · · hp,q(L− 1) 0
. . . . . .

0 hp,q(0) · · · hp,q(L− 1)

 ,

s(k) = [s1(k)
T , · · · , sn(k)T ]T ,

sq(k) = [sq(k), · · · , sq(k −N + 1)]T .

The identification task for system (1) is equivalent to iden-
tifying H in (3).

The above MIMO model appears in various applications.
For instance, in digital communications, the transmission of
n/2 rectangular QAM sources propagating towards m/2 sen-
sors through a multipath environment modelled by the com-
plex filters is described by Eq. (1).

3. ASSUMPTIONS AND INDETERMINACIES

In the blind deconvolution scenario we assume that the filter
matrix H, as well as the vector source sequence s(k), are un-
known. However, we make the following assumptions which
are suitable to the communications problem described above:

1 The signals sq are independent to each other

2 The samples sq(k) are i.i.d.

3 For all sources, sq , the symbol transmission probabilities
are uniform:

ps = Prob(sq(k) = r) =
1

M
, ∀k, q, r. (5)

It is well known that the blind identification has cer-
tain indeterminacies pertaining to the sign and order of the
sources. Any permutation and sign change of the sources does
not change the observed signal x as long as the submatrices
H̃q = [H̄T

1,q · · · H̄T
m,q]

T are also permuted and signed ap-
propriately. It follows that a successful Blind Identification
algorithm is able to estimate the submatrices H̃q only up to
sign and in no order.

4. BLIND IDENTIFICATION

In analogy to the treatment of the convolutive Multi-Input
Single-Ouput (MISO) case in [15] our approach will be based
in the distribution of the output signal differences. Let’s call
ds = s(k)− s(k′) and dx = x(k)− x(k′) the input and out-
put differences between the samples at time instances k and
k′. Then, clearly,

dx(k, k
′) = Hds(k, k

′). (6)

with

ds(k, k
′) = [ds1(k, k

′)T , · · · ,dsn(k, k
′)T ]T , (7)

dsq (k, k
′) = [δq(k, k

′), · · · , δq(k − N + 1, k′ − N + 1)]T ,
δq(k, k

′) = sq(k) − sq(k
′). In the subsequent analysis, due

to input stationarity, we can drop the indices k and k′ without
affecting our results. The vector ds contains totally C = n×
N elements. The distribution of dx depends directly on the
distribution of ds, which in turn depends on the distribution
of the input differences dsq .

Due to the PAM nature of the sources, the difference sig-
nal δq is discrete, taking values from the set

∆V = {−(M − 1),−(M − 2), · · · , (M − 2), (M − 1)}.

There are M equiprobable input symbols in V (with proba-
bilities ps = 1

M ), and M2 equiprobable input symbol couples
in V ×V . It is not difficult to compute the probabilities of the
input symbol differences δq and see that they are independent
of q:

pδ(µ)
△
= Prob(δq = µ) = (M − |µ|)/M2, (8)

µ = 0,±1,±2, · · · ,±(M − 1). According to the assumption
1, the elements of the input vector difference ds are indepen-
dent, so the vector probability can be written as

pds([µ1, · · · , µC ]
T ) =

C∏
i=1

pδ(µi) (9)

As in [15] we make the assumption that the columns hi

of H are Delta-independent, i.e.

4 In (6) if ds,d
′
s ∈ ∆V and ds ̸= d′

s then Hds ̸= Hd′
s.

We now observe the following facts:
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• The most likely input difference vector ds, is the zero
vector with probability

P0 = pds(0) =

C∏
i=1

pδ(0) =
1

MC
. (10)

• The next most likely input difference vectors are
those of the form [±1, 0, · · · , 0]T , [0,±1, · · · , 0]T , ...,
[0, 0, · · · ,±1]T , containing C − 1 zeros and one ele-
ment 1 or −1. There are 2C such vectors (call them
bq , q = 1, · · · , 2C) with equal probabilities of appear-
ance:

P1 = pds(bq) = pδ(±1)
C−1∏
i=1

pδ(0) =
M − 1

MC+1
(11)

According to the definition in (7) and Assumption 4 the
corresponding output vectors are:

d(q)
x = Hbq = ±hq, q = 1, · · · , 2C (12)

where hq is the q-th column of the matrix filter H.

• All other input difference vectors have lower probabili-
ties than P1 because they include two or more non-zero
elements.

Based on Eq. (12), it is therefore possible to extract the
columns of H (up to the sign and in arbitrary order) by arrang-
ing the output difference vectors dx in decreasing probability
order and collecting the vectors with rank 2, · · · , 2C + 1.

4.1. Ordering the columns

The matrix H is composed of multiple Toeplitz blocks as de-
scribed in (4.1). This imposes constraints in the order of the
columns. In particular, for all integers α > 0, if the indexes
(p, q), and (p′, q′) = (p − α, q − α), belong to the same
Toeplitz block then we must have hp,q = hp′,q′ . However,
these constraints are not enough to uniquely identify H since
any matrix

Ĥ =

 H̄1,π(1) · · · H̄1,π(n)

...
...

H̄m,π(1) · · · H̄m,π(n)

 ,

will satisfy them for any permutation function π.

4.2. Blind Identification and Source Separation

The preceding analysis leads to the following algorithm for
identifying the MIMO filter H (up to the aforementioned in-
determinacies):

Algorithm 1 Noiseless Blind Identification

• Compute the output differences dx(k, k
′) for all pairs

of indexes k, k′

• Estimate the distribution pdx of dx

• Sort the probabilities p̂dx . Let ĥq , q = 1, · · · , 2C, be
the values of dx with probabilities ranging from the 2nd
highest to the (2C+1)-th highest probability.

• Arrange the vectors ĥq by forcing the satisfaction of the
Toeplitz-based structure. From the elements of the sub-
matrices we obtain our estimates of the mixing filters.

From the estimated MIMO filter matrix Ĥ the reconstruc-
tion of the sources can be achieved by minimizing

ŝ = arg min
s∈Vs

∥x− Ĥs∥2 (13)

where Vs = V C is the input alphabet for the vector s. Since
the input alphabet is discrete, we can perform an exhaustive
search in the grid of the input space and keep the minimum
input vector.

5. NOISY CASE

The presence of noise in the observations can be introduced
by modifying Eq. (3) as:

x(k) = Hs(k) + e(k). (14)

with e(k) ∈ IRmW being the additive Gaussian noise; e(k) is
assumed statistically independent to s(k). Our method uses
the observation difference as it is described in (6). The equiv-
alent equation for the noisy scenario is

dx(k, k
′) = Hds(k, k

′) + de(k, k
′), (15)

where the noise difference de is also Gaussian. Algorithm
1 cannot be used as it is, because we need first to identify
the noiseless values Hds(k, k

′). These values should be the
centers of Gaussian clusters as described in (15) therefore, we
apply a clustering scheme in (mW )-dimensional space. We
employ the Basic Sequential Clustering Algorithm (BSAS)
[16][chapter 12] since the algorithm is suitable for detecting
compact groups of data, as long as they are well separated in
space. In this algorithm, each pattern creates a new cluster
unless its distance from one of the existing cluster centers is
smaller than some threshold θ.

The most challenging problem of the BSAS algorithm is
the proper choice of θ. Luckily, we know in advance that the
most probable cluster is centered around zero and its proba-
bility is P0 as given in Eq. (10). Therefore, we choose θ as
follows: we arrange the norms ν(k, k′) = ∥dx(k, k

′)∥2 in
increasing order ν(1), ν(2), · · · , ν(K2), and we set θ such that

3
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(a) θ ≥ ν(⌊αP0K
2⌋), where α less than, but close to 1, eg.

α = 0.9; in other words, at least αP0K
2 many differ-

ences dx have norm less than θ (out of the total K2

differences)

(b) the difference ν(p+1) − ν(p) is a local peak in the range
⌊αP0K

2⌋ ≤ p ≤ ⌊βP0K
2⌋, with β > 1, but close to

1, for instance β = 1.2.

The overall identification algorithm is summarized below:

Algorithm 2 Noisy MIMO Identification

• Collect the noisy differences dx(k, k
′), k, k′ =

1, · · · ,K, and initialize the set of cluster centers to
Y = {dx(1, 1) = 0}; Set θ as described above

• For each dx(k, k
′) find the distance D(k, k′) to the

closest center ci in Y

– If D(k, k′) > θ, then update ci to be the aver-
age of the vectors that belong to its corresponding
cluster

– otherwise, add this difference vector to the set of
centers, Y = Y ∪ {dx(k, k

′)}

• Use the cluster centers as the noiseless difference vec-
tors dx and proceed with the identification as in Algo-
rithm 1.

6. SIMULATIONS

We have tested the identification algorithm on various artifi-
cial data sets generated by random MIMO systems. Due to
lack of space we show here two experiments. In the first ex-
periment we simulated a noiseless system with n = 2 sources
with M = 2 PAM levels, m = 8 outputs, filter length L = 2,
and window size W = 2 (so C = 6). The mixing filters were

h1,1 = [−0.3005,−1.0025] h1,2 = [0.4238,−0.3287]

h2,1 = [−0.0658, 0.0313] h2,2 = [0.6463,−0.6827]

h3,1 = [0.2226,−1.1322] h3,2 = [1.0467,−0.5247]

h4,1 = [1.0593,−0.7430] h4,2 = [1.2548, 0.4496]

h5,1 = [0.4933, 0.5957] h5,2 = [0.3018,−0.2308]

h6,1 = [−0.5215,−1.9079] h6,2 = [0.8483, 0.1546]

h7,1 = [0.9549,−1.4300] h7,2 = [−0.7538,−0.3955]

h8,1 = [0.2790, 1.4017] h8,2 = [−0.2967, 0.0629]

The data set size was K = 300 samples, thus generating
K2 = 90, 000 pairwise differences. Figure 1 shows the prob-
ability of the most likely clusters produced by BSAS with θ
automatically set to 0.1289. Algorithm 2 yields the matrix
Ĥ whose columns ĥi are perfect reconstructions of the orig-
inal comlumns of H although with mixed order and for both
signs. In particular: ĥ1 = −h2, ĥ2 = h2, ĥ3 = h1, ĥ4 =
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Fig. 1. Sorted probabilities of the most likely differences in a
noiseless MIMO system (C = 6). Notice that the probabili-
ties from i = 2 to i = 13 are almost equal and there is a clear
jump for i = 1 and i = 14.

h6, ĥ5 = −h1, ĥ6 = −h6, ĥ7 = h5, ĥ8 = −h5, ĥ9 =
−h3, ĥ10 = h3, ĥ11 = h4, ĥ12 = −h4.

In the second experiment, the same MIMO system incor-
porates additive Gaussian white noise with SNR = 25dB. In
this case, we use θ = 0.7213 and obtain almost perfect recon-
struction of the original columns,

ĥT
1 h1 = 0.9997∥ĥ1∥∥h1∥, ĥT

2 h1 = −0.9992∥ĥ2∥∥h1∥,

ĥT
3 h3 = −0.9998∥ĥ3∥∥h3∥, ĥT

4 h3 = 0.9997∥ĥ4∥∥h3∥,

ĥT
5 h5 = 0.9997∥ĥ5∥∥h5∥, ĥT

6 h2 = 0.9997∥ĥ6∥∥h2∥,

ĥT
7 h5 = −0.9999∥ĥ7∥∥h5∥, ĥT

8 h6 = −0.9971∥ĥ8∥∥h6∥,

ĥT
9 h2 = −0.9993∥ĥ9∥∥h2∥, ĥT

10h4 = 0.9987∥ĥ10∥∥h4∥,

ĥT
11h4 = −0.9986∥ĥ11∥∥h4∥.

except that h6 is not extracted (only −h6 matches ĥ8). This
is due to the fact that the difference vectors ranking 2nd to
13th are not so clearly separated from the 14th vector, as
shown in Fig. 2, and therefore a mixup happened in the last
vector. More simulations results and theoretical analysis on
the effect of noise will be presented in a future full paper.

7. CONCLUSIONS

We have presented a novel method for the blind identifica-
tion and separation of MIMO convolutive systems excited by
PAM modulated inputs. The method is similar to the MISO
approach proposed in [15] except that we use a new clustering
method based on the BSAS scheme which gives better results
even in the presence of noise. The proposed method exploits
the properties of the data difference distribution. It turns out
that the most probable differences reveal the columns of the
mixing filter matrix, upto a permutation and sign. The block
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Fig. 2. Probabilities of the most likely differences in a noisy
MIMO system with SNR at 25dB.

Toeplitz structure of the matrix can be used to recover the or-
der of the columns within a block although it cannot recover
the order of the blocks which is linked with the indetermi-
nacy of the input order. An important feature of the method
is the fact that the size of the differences population depends
quadratically on the number of observed samples, meaning
that even with relatively few samples (e.g. less than 500)
we can perform reliable clustering and solve the blind MIMO
problem.
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