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ABSTRACT

This work presents an exact tracking analysis of the Normalized

Least Mean Square (NLMS) algorithm for circular complex cor-

related Gaussian inputs. Unlike the existing works, the analysis

presented neither uses separation principle nor small step-size as-

sumption. The approach is based on the derivation of a closed

form expression for the cumulative distribution function (CDF)

of random variables of the form (||u||2D1
)(||u||2D2

)−1 where u

is a white Gaussian vector and D1 and D2 are diagonal matri-

ces and using that to derive the first and second moments of such

variables. These moments are then used to evaluate the tracking

behavior of the NLMS algorithm in closed form. Thus, both the

steady-state mean-square-error (MSE) and mean-square-deviation

(MSD )tracking behaviors of the NLMS algorithm are evaluated.

The analysis is also used to derive the optimum step-size that min-

imizes the excess MSE (EMSE). Simulations presented for the

steady-state tracking behavior support the theoretical findings for

a wide range of step-size and input correlation.

Index Terms — Adaptive filters, NLMS algorithm, Tracking

analysis.

1. INTRODUCTION

The NLMS algorithm [1] provides faster convergence compared to

the LMS algorithm [2] by utilizing the input power normalization.

However, this normalization complicates the performance analysis

of the algorithm. In [3], closed form expressions for the transient

analysis and the steady-state MSE of the NLMS algorithm are de-

veloped which was extended in [4] to the tracking case. However,

the expressions developed in [3] and [4] are both in terms of multi-

dimensional moments which they falls short of evaluating. Several

other works have attempted to evaluate these moments but the cor-

responding analysis does not result in closed form performance

expressions [2, 3, 5, 6], or relies on strong assumptions. Examples

of these assumptions include the separation principle [7, 8], ap-

proximations [9], white input [6, 9, 10], specific structure of input

regressors distribution [7], small step size [7], long filters [9] and

approximate solutions using Abelian integrals [7].

Recently, in [11], an exact tracking performance of the ǫ-NLMS

for colored circular complex Gaussian data is presented but this ap-

proach fails to work in the special case of ǫ = 0 which correspond

to the NLMS algorithm. The reason is that the ǫ-NLMS expres-

sions are expressed in terms of the exponential integral function

En(x)
△
=
∫∞

1
t−ne−xtdt which becomes infinite when we set

ǫ = 0. This is compounded by the fact that the resulting expres-

sions are too involved to resolve indefinite forms like ∞ ± ∞ or

∞/∞. Moreover, the approach in [11] employs the separation

principle to obtain the steady-state result, which we avoid in this

paper. Furthermore, this work evaluates both steady-state tracking

EMSE and MSD of the NLMS algorithm, unlike [11] which has

ignored the tracking MSD analysis.

The approach of the paper is based on evaluating the CDF and

the moments of random variables of the form ξ (u,D1,D2) =
(||u||2D1

)(||u||2D2
)−1 where u is a white Gaussian vector and D1

and D2 are diagonal matrices. This is done by expressing these

variables as ratios of quadratic forms in isotropic random variables

(||φ||2D1
)(||φ||2D2

)−1 where φ is an isotropic random vector. Thus,

this work deals with isotropic random variables (as opposed to the

Gaussian random variables approach used in [11]). The tracking

analysis can be performed using various moments of ξ which will

be evaluated from the derived CDF.

The paper is organized as follows. Following this introduction,

system model is described in Section 2. The tracking performance

analysis of the NLMS algorithm is presented in Section 3. Outline

of our approach is presented in Section 4. Derivation for the CDF

of the random variable of the form (||u||2D1
)(||u||2D2

)−1 is carried

out in Section 5. Calculation of the required moments of other

random variables are given in Section 6. In Section 7, procedure

to evaluate the steady-state tracking EMSE and MSD using the

derived moments is presented. The steady-state tracking EMSE

is then optimized with respect to algorithm’s step-size in Section

8. Simulation results are presented in Section 9 investigating the

performance of the derived analytical model. Finally, conclusion

is given in Section 10.

2. SYSTEM MODEL

Given a sequence of desired response {di} and a sequence of re-

gressor (row) vectors {ui}, an adaptive filter generates a weight

vector wi at each instant so that uiwi is a good estimate of di. In

the NLMS algorithm, starting from w−1 = 0, the weight vector is

updated according to

wi = wi−1 + µ
u∗

i

||ui||2
ei, i ≥ 0 (1)

where ei = di −uiwi−1 is estimation error and µ is the step-size.

In tracking analysis, the desired response di is generated by the

time-variant system identification model as di = uiw
o
i +vi where

EUSIPCO 2013 1569745885
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wo
i varies according to wo

i = wo
i−1 + qi where qi is assumed to

be i.i.d with mean zero and covariance matrix Rq = E[qiq
∗
i ].

Thus, wi generated by the adaptive filter attempts to track time

varying system wo
i . Let w̃i = wo

i − wi denote the weight error

vector, then

ei = uiw̃i−1 + vi + uiqi, (2)

and, by subtracting wo
i from both sides of (1), the NLMS update

can be equivalently written as

w̃i = w̃i−1 − µ
u∗

i

||ui||2 ei + qi, i ≥ 0 (3)

We will restrict our attention in this paper to circularly symmetric

Gaussian inputs, i.e. ui ∼ CN (0, R). Without loss of gener-

ality, the autocorrelation matrix R can be assumed to be diago-

nal, that is, R = Λ = diag(λ1, λ2, · · · , λM ) [3, 6]. In addition

to the Gaussian assumption on ui, we assume that the sequences

{vi}, {ui}, and {qi} are i.i.d. and mutually independent.

3. TRACKING ANALYSIS OF THE NLMS ALGORITHM

The recursion for the weighted variance of weight error vector w̃i

can be set up as [3]

E[||w̃i||2σ] = E[||w̃i−1||2Fσ ]+µ2σ2
vE

[ ||ui||2σ
(||ui||2)2

]

+E[||qi||2Fσ ],

(4)

where σ is an M ×1 parameter weight vector that can provide dif-

ferent performance measures by choosing its value appropriately,

and F = I − µA + µ2B where I is the identity matrix while A

and B are the multidimensional input moment matrices defined by

A
△
= 2E

[

u∗
i ui

||ui||2
]

, B
△
= E

[

(u∗
i ui)

T ⊙ (u∗
i ui)

(||ui||2)2
]

, (5)

Here the notation ⊙ denotes an element-by-element (Hadamard)

product. Thus, the steady-state tracking EMSE can be evaluated

by choosing σ = (I − F)−1
λ and analyzing the recursion (4) at

steady-state (i.e., i → ∞). Consequently, the steady-state tracking

EMSE (ζtrack) of the NLMS algorithm is found to be [4]

ζtrack = µ2σ2
vc(I− F)−1

λ + rqF(I− F)−1
λ (6)

where c, rq , and λ are vectors defined as

c
△
= diag(C), λ

△
= diag(Λ), and rq

△
= diag(Rq) (7)

and the moment matrix C is defined by

C
△
= E

[

u∗
i ui

(||ui||2)2
]

(8)

Similarly, the steady-state MSD (Mtrack) of the NLMS algorithm

can be evaluated by substituting σ = (I−F)−11 in recursion (4)

at i → ∞ and can be shown to be

Mtrack = µ2σ2
vc(I− F)−1

1 + rqF(I−F)−1
1 (9)

where 1 is an M × 1 vector with all entries equal to 1.

4. OUR METHODOLOGY

The mean-square performance measures of the NLMS algorithm

can be evaluated by the moment matrices A, B, and C. In order

to evaluate these moment matrices, we rewrite them as follows

A=ΛĀ, B = ΛB̄Λ, and C = ΛC̄ (10)

where Ā, B̄, and C̄ are for the “whitened” versions of matrices A,

B, and C, respectively, i.e. the vector ui in (5) and (8) is replaced

by ūi such that ui(k) =
√

λkūi(k). Now, in order to evaluate

the entries of these moment matrices, we define following random

variables

sk
△
=

|ū(k)|2
||ū||2Λ

, skk̄

△
=

√

λk

λ
k̄

|ū(k)|2 +
√

λ
k̄

λk

|ū(k̄)|2

||ū||2Λ
,

zk
△
=

|ū(k)|2 + 1

||ū||2Λ
and r

△
=

1

||ū||2Λ
(11)

where k and k̄, respectively, denote the kth and k̄th distinct po-

sitions of the elements in input vector ui. Here we have dropped

the subscript i to simplify the notations. With this, the entries of

the matrices Ā, B̄, and C̄ can be expressed directly in terms of

the moments of these random variables as shown in Table 1. In

Moment Matrix Entries Required Moment

Ā(k, k) 2E [sk]

Ā(k, k) 0

B̄(k, k) E
[

s2
kk̄

]

B̄(k, k) 1
2
E
[

s2
kk̄

]

− 1
2
E
[

s2
k

]

− 1
2
E
[

s2
k̄

]

C̄(k, k) 1
2
E
[

z2
k

]

− 1
2
E
[

s2
k

]

− 1
2
E
[

r2
]

C̄(k, k) 0

Table 1: Entries of Ā, B̄, and C̄ in terms of sk, skk̄, r, and zk.

the ensuing, CDF and moments of the required random variables

defined in (11) are evaluated.

5. THE CDF OF SK AND SKK̄

First we evaluate the CDF of random variable skk̄. The key to

evaluating the CDF of skk̄ is to first define skk̄ in terms of isotropic

random variable. By using the definition φ =
[

ū(1)
‖ū‖

, · · · , ū(M)
‖ū‖

]

,

we can rewrite skk̄ as

skk̄ =

√

λk

λ
k̄

|ū(k)|2 +
√

λ
k̄

λk

|ū(k̄)|2
∑M

i=1 λi|ū(i)|2
=

‖φ‖2
Σ

kk̄

‖φ‖2
Λ

, (12)

where Σkk̄ is an M × M diagonal matrix with diagonal elements

σkk̄
i such that σkk̄

i is equal to
√

λk

λ
k̄

for i = k,

√

λ
k̄

λk

for i = k̄, and

0 otherwise. The random vector φ in (12) is known as the isotropic

random vector [12] and has the pdf p(φ) = Γ(M)

πM
δ(‖φ‖2 − 1).

We can now express the CDF of skk̄ using the isotropic random

variable φ. Specifically,

Fs
kk̄

(x) = Pr{‖φ‖2
xΛ−Σ

kk̄
≥ 0} =

∫

‖φ‖2

xΛ−Σ
kk̄

≥0

p(φ)dφ

(13)

This is an M-dimensional integral over the region defined by the

inequality ‖φ‖2
xΛ−Σ

kk̄
≥ 0 which is difficult to evaluate. We

can write (13) as an unconstrained integral by using the unit step

2
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function as

Fs
kk̄

(x) =

∫

p(φ)ũ(‖φ‖2
xΛ−Σ

kk̄
)dφ, (14)

In order to evaluate the above integral, we use the following inte-

gral representations of the step and the delta functions [12]

ũ(x) =
1

2π

∫ ∞

−∞

ex(jω+β)

(jω + β)
dω and δ(x) =

1

2π

∫ ∞

−∞

ex(α+jω)dω,

(15)

where α, β > 0 and are free parameters that we can conveniently

choose. After replacing delta and step functions with their equiva-

lent integral representations, integrals appearing in the above equa-

tion can be evaluated using the methodology of [13, 14]. We skip

these derivations due to space limitations. The CDF of skk̄ can be

shown to be

Fs
kk̄

(x) =

M
∑

i=1

(λix − σkk̄
i )M−1ũ(λix − σkk̄

i )

ΠM
j=1,j 6=i[(σ

kk̄
j − σkk̄

i ) − (λj − λi)x]
, (16)

where σkk̄
i is the ith diagonal element in matrix Σkk̄. Similarly,

the CDF of sk, denoted by Fsk
(x), can be found using the above

mentioned approach and is found to be the same expression as

given in (16) with σkk̄
i equal to 1 for i = k only and 0 otherwise.

5.1. The moments of sk and skk̄

It is easy to see that sk is a positive random variable whose support

is the interval [0, 1/λk]. Thus, by employing integration by parts

and using (16), the first moment of sk can be evaluated as

E[sk] =

∫ ∞

0

(1 − Fsk
(x)) dx =

∫ 1

λ
k

0

(1 − Fsk
(x)) dx (17)

Using partial fraction expansion, we can show after tedious but

straight forward algebraic manipulations that

E[sk] =
1

λk

−
M
∑

i=1,i6=k

pi

(

1

λk

+
ln (λik)

(λi − λk)

)

(18)

where ln(.) represents the natural logarithm while λij and pi are

defined as

λij
△
=

λi

λj

,∀ i, j and pi
△
=

λM−1
i

ΠM
j=1,j 6=i(λi − λj)

,∀ i. (19)

The second moment of skk̄ can be similarly evaluated. Using the

CDF from (16) with [0, 1/λk] as support of skk̄ and by employing

the partial fraction expansion, the second moment of skk̄ can be

shown to be

E[s2
kk̄] =

1

λkλk̄

−
M
∑

i=1,i6=k,k̄

pi

(

1

λkλk̄

+
2cki + 2ck̄i
√

λkλk̄

+ln (λki)
2ckiσ̄ki + ln (λk̄i)

2c
k̄i

σ̄
k̄i

)

(20)

where σ̄ji, cki, and ck̄i are defined as

σ̄ji =
σkk̄

j

(λi − λj)
, cki =

(−σ̄ki)
M−1

ΠM
l=1,l6=k,i(σ̄li − σ̄ki)

(21)

ck̄i =
(−σ̄k̄i)

M−1

ΠM
l=1,l6=k̄,i

(σ̄li − σ̄k̄i)
(22)

Following the same approach, and using the CDF of sk, the second

moment of sk is found to

E[s2
k] =

1

λ2
k

−
M
∑

i=1,i6=k

pi

(

1

λ2
k

− 2

λk(λi − λk)
+

2ln (λik)

(λi − λk)2

)

(23)

6. MOMENTS OF r AND zk

In this section, the moments of random variables r and zk are eval-

uated using their respective CDFs.

6.1. The CDF and the pdf of r

Consider the random variable r defined in (11) for circular com-

plex Gaussian input. Thus, the CDF of r, denoted by Fr(x), can

be evaluated using the technique of [15] which is found to be:

Fr(x) =

M
∑

m=1

λM
m

|Λ|ΠM
i=1,i6=m (λmi − 1)

e
−1

λmx ũ(x) (24)

Thus, the pdf of r, denoted by pr(x), can be obtained via differen-

tiation of the above CDF and can be shown to be:

pr(x) =

M
∑

m=1

λM−1
m

x2|Λ|ΠM
i=1,i6=m (λmi − 1)

e
−1

λmx (25)

6.2. The second moment of r

Since, we need only the second moment of r, we evaluate this mo-

ment using the pdf of r derived in (25). Upon substituting the value

of pr(x), the second moment of r can be evaluated as follows:

E[r2] =
M
∑

m=1

λM−1
m

|Λ|ΠM
i=1,i6=m (ζmi − 1)

∫ ∞

0

e
−1

λmx

x2
dx

=

M
∑

m=1

λM
m

|Λ|ΠM
i=1,i6=m (ζmi − 1)

(26)

6.3. The second moment of zk

We can evaluate the second moment of zk using the conditional

moment E[z2
k|ak] by knowing that E[z2

k] = E[E[z2
k|ak]] where

ak =
∑M

m=1,m6=k |u(m)|2. The conditional moment E[z2
k|ak]

can be calculated using the conditional pdf fzk|ak
(x) and is found

to be

E[z2
k|ak] =

1

λ2
k

+
2(λk − ak)

λ3
k

e
a

k

λ
k Γ

(

0,
ak

λk

)

+
(λk − ak)2

λ4
k

e
a

k

λ
k Γ

(

−1,
ak

λk

)

(27)

where Γ(α, x) is the Incomplete Gamma function. Now, the pdf

of ak is derived using the approach of [15] and is found to be

fak
(ak) =

λk

|Λ|
M
∑

m=1,m6=k

cm e
−

a
k

λm (28)

3
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where cm =
(

ΠM
l=1,l6=k,m

(

1
λl

− 1
λm

))−1

. Thus, finally, the

second moment of zk, E[z2
k], is calculated by averaging the condi-

tional moment E[z2
k|ak] given in (27) over fak

(ak). By defining

ηmk = 1 − λmk, the moment E[z2
k] is found to be:

E[z2
k] =

M
∑

m=1,m6=k

cm

|Λ| ln(λm) + (29)

M
∑

m=1,m6=k

cmλm

λk|Λ|
(

1 +2 F1 (1, 1; 2; ηmk) − 2F1 (1, 1; 3; ηmk)
)

+

M
∑

m=1,m6=k

cmλ2
m

λ2
k|Λ|

(

1

3
2F1 (1, 2; 4; ηmk) −2 F1 (1, 2; 3; ηmk)

)

7. STEADY-STATE TRACKING EMSE AND MSD

EVALUATION

Equations (18), (20), (23), (26), and (29) provide closed form

expressions for E[sk], E[skk̄], E[s2
k], E[r2], and E[z2

k], respec-

tively, which can be used to evaluate the entries of Ā, B̄, and C̄

and hence of the matrices A, B, and C given in (10). Finally,

upon substituting in (6) and (9), the steady-state tracking EMSE

and MSD of the NLMS algorithm can be evaluated, respectively.

8. OPTIMUM STEP-SIZE

To evaluate the optimum step-size (µo), we need to differentiate

the expression of ζtrack in (6) with respect to step-size (µ) and set

it zero. This is difficult to do due to the inverse of (I−F) appearing

in (6). To go around this, we make the following approximation:

E[skk̄] ≈
√

E [s2
k] .E

[

s2
k̄

]

(30)

which allow us to approximate B̄ as a rank one matrix

B̄ ≈ b̄rb̄
T
r (31)

where b̄r =
[

√

E [s2
1],
√

E [s2
2], · · · ,

√

E [s2
M ]
]

. With this bound,

we can approximate the matrix F as

F ≈ I − µΛĀ + µ2
Λb̄rb̄

T
r Λ (32)

We can use matrix inversion lemma to evaluate (I −F)−1 as

(I −F)−1 ≈ 1

µ
Ā

−1
Λ

−1 +
Ā−1b̄rb̄

T
r ΛĀ−1Λ−1

1 − µb̄T
r ΛĀ−1b̄r

(33)

With this approximation, differentiate both sides of (6) with re-

spect to µ and set the result to zero to get

(

2µσ2
vc + rq(2µB − A)

)

(

A−1

µ
+

Ā−1B̄ΛA−1

1 − µb̄T
r ΛĀ−1b̄r

)

λ

=
(

µ2σ2
vc + rqF

)

(

A−1

µ2
− Ā−1B̄ΛA−1b̄T

r ΛĀ−1b̄r
(

1 − µb̄T
r ΛĀ−1b̄r

)2

)

λ

(34)

Note that (34) is a fourth order polynomial equation in µ which

can be easily solved to find its roots and hence the optimum µ.
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Exact Analytical via Proposed Method,α
c
=0.9

Analytical via Separation Principle, α
c
=0.9

Simulation, α
c
=0.9

Exact Analytical via Proposed Method,α
c
=0.1

Analytical via Separation Principle, α
c
=0.1

Simulation, α
c
=0.1

Figure 1: Steady-state tracking EMSE versus µ for αc = 0.1 and

αc = 0.9 with σ2
q = 10−4.

9. SIMULATION RESULTS

In simulations, the tracking performance of the NLMS algorithm

for a random walk channel is investigated for two different val-

ues of σ2
q , that is 10−4 and 10−6 with input correlation R(i, j) =

α
|i−j|
c with correlation factor αc (0 < αc < 1) and noise vari-

ance σ2
v = 0.01. In Figure 1, the tracking performance of the

NLMS algorithm is reported for σ2
q equal to 10−4. In this exper-

iment, two different values of correlation factor αc, that is, 0.1

and 0.9 showing smaller and larger correlation, respectively. The

tracking results of the proposed exact analytical solution are com-

pared with the analytical results via separation principle [2] and

the one obtained from simulation. It can be easily depicted from

the figure that the proposed exact analytical result accurately eval-

uated the tracking EMSE for a wide range of step-size while the

one from separation principle gives under estimate of the actual

values. Moreover, unlike the stationary case, the tracking EMSE

is not a monotonically increasing function of step-size. The op-

timum values of step-size found from equation (34) are found to

be .28 and 0.4, respectively, for αc equal to 0.9 and 0.1 which are

verified from the simulation results given in Figure 1. In order to

investigate the effect of σ2
q , simulation is carried for σ2

q equal to

10−6 while correlation factor αc is kept at 0.5 in Figure 2. Finally,

simulation result for the steady-state MSD of the NLMS algorithm

is presented for σ2
q equal to 10−6 and αc equal to 0.5 in Figure 3.

The results show that the derived analytical expressions are valid

for both large and small values of σ2
q .

10. CONCLUSION

This work has evaluated certain expectations of complex Gaussian

functionals using a novel approach which is needed for recursions

for the tracking analysis of the NLMS algorithm. Our approach

then showed that these moments can be evaluated by first evaluat-

ing the CDF of a variable of the form (||u||2D1
)(||u||2D2

)−1 where

u is a white Gaussian vector and D1 and D2 are diagonal matrices

and using that to derive the first and second moments of such vari-

ables. The advantage of this approach is its ability to evaluate per-
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Figure 2: Steady-state tracking EMSE versus µ for αc = 0.5 and

σ2
q = 10−6.

formance of the NLMS algorithm in closed form without imposing

separation principle or small step-size assumption. The theoretical

results are shown to yield excellent agreement with Monte Carlo

simulations.
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