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ABSTRACT

In this work, Power Spectral Density (PSD) of different im-

plementations of Single-Carrier Frequency Division Multiple

Access (SC-FDMA) are investigated. First, a general model

of spectrally shaped SC-FDMA transmission scheme is pro-

posed. This scheme is shown to encompass different imple-

mentations of SC-FDMA including the classical Long Term

Evolution (LTE) SC-FDMA waveform. Then analytical ex-

pressions of PSD are derived for both localised and inter-

leaved FDMA using or not spectral shaping techniques based

on the aforementioned general SC-FDMA system model. Fi-

nally, analytical results are validated through comparison with

simulation estimated PSD.

1. INTRODUCTION

New generation mobile networks such as LTE- Evolved Uni-

versal Terrestrial Radio Acess (EUTRA) require both low la-

tency and high speed data conveying. However, the mobile

radio channel suffers from Inter-Symbol Interference due to

different fading phenomena arising from multipath propaga-

tion. A natural solution to the frequency selectivity of the

channel is to use multi-carrier transmission schemes, such as

FDMA. Yet, unlike single carrier transmissions, the fluctu-

ations of multi-carrier signals lead to high Peak to Average

Power Ratio (PAPR). This implies using a back-off to the

saturation power of terminals amplifiers. Thus, energy con-

sumption is degraded and the system is not attractive in terms

of battery autonomy of the User Equipments (UE). Conse-

quently, candidates to LTE uplink physical layer needed to

have low PAPR which is the case of SC-FDMA also referred

to as Discrete Fourier Transform (DFT)-spread OFDMA [1].

SC-FDMA is based on a DFT precoding of OFDM symbols,

which ensures lower PAPR compared to OFDMA. There are

two types of SC-FDMA systems differing in the way DFT

outputs are mapped into the sub-carriers. The Localised SC-

FDMA which is referred to as LFDMA, consists of map-

ping the DFT outputs into a block of consecutive sub-carriers.

This mapping is the one chosen in LTE. A second mapping

called Distributed FDMA, distributes the DFT outputs into

sub-carriers over the entire bandwidth and when the spacing

between subcarriers is constant it is called Interleaved FDMA.

IFDMA has lower PAPR than LFDMA. However, IFDMA

has not been selected by LTE standard since a fine synchro-

nisation of all users is required, which is highly complex for

multiple access networks. Even though having lower PAPR

than OFDMA, reduction of SC-FDMA PAPR is still a highly

desired feature. Many studies have been dedicated to further

PAPR reduction. Some of the proposed solutions were di-

rectly inspired by the existing OFDM PAPR reduction tech-

niques such as companding [2] and pulse shaping in the time

domain [3]. Other solutions are based on pulse shaping in the

frequency domain, commonly called Spectrum Shaping (SS)

[4] [5] or more generally precoding [6]. Spectrum Shaping

reduces the PAPR by windowing the DFT outputs before be-

ing mapped onto sub-carriers.

However, to the authors’ knowledge, no thorough analysis

of the power spectral density of SS-SC-FDMA systems has

been presented in literature. Yet, knowing the spectral den-

sity is of paramount importance for users subcarrier allocation

[7] as well as for fitting into the assigned transmission mask.

OFDM PSD analytical expressions [8] are no longer valid be-

cause of the DFT precoding and spectral shaping. Hence,

we need to develop a system model that would allow for a

general abstraction of different spectrally shaped SC-FDMA

implementations. We actually show that this general model

encompasses all versions of mappings and spectral shaping

functions of SC-FDMA and derive general analytical PSD.

These results are compared with estimated spectral densities

of different SC-FDMA implementations.

This paper is outlined as follows. Section 2 presents the gen-

eralised spectral shaping transmitter model which allows us

to develop theoretical results of PSD in section 3 and some

comparisons with simulation results. In section 4, we derive

the PSD of IFDMA with spectral shaping before ending with

some remarks and conclusion. In the following, the term x-

DFT (resp. y-IDFT) designates a DFT over x points and IDFT

over y points respectively.
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Fig. 1. Classical LFDMA
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Fig. 2. LFDMA with spectral shaping M ≤ U ≤ 2M

2. SPECTRALLY SHAPED LFDMA

All following results assume a mono-user scheme. A classical

localised FDMA scheme is depicted in Fig. 1. It consists of

M-DFT precoding of input symbols and mapping these out-

puts into contiguous M out of the N-IDFT inputs.

Spectrally shaped LFDMA in Fig. 2 consists of an addi-

tional (Spectrum Shaping) block at the output of the M-DFT

which is an element wise multiplication with some specific

frequency domain response of U samples. Since U can be

larger than M , the M-DFT outputs need to be extended to

reach a length of U symbols. This operation is done by copy-

ing as depicted in Fig. 3. The Copy block has been proposed

in [4] considering that M ≤ U ≤ 2M for raised cosine spec-

tral shaping. However, in order to account for general spec-

tral shapes of length U up to N, we replace the copying block

by an L-fold repetition where L = N/M is the SC-FDMA

spreading factor (i.e. the maximum allowed number of users

for N sub-carriers).

Hence, we derive the general physical model of SS-LFDMA

as depicted in Fig. 4: blocks of M zero mean independent

identically distributed (i.i.d) data symbols ck,n drawn from a

complex alphabet of duration Tc are M-DFT precoded. The

notation (.)k,n indicates the symbol on the kth sub-carrier

for the nth SC-FDMA time domain symbol. An L-fold rep-

etition allows transforming the M symbols into N symbols

d′k,n which are then frequency shaped by a general trans-

fer function of N samples (gk). The N resulting symbols

xk,n = d
′

k,ngk are then cyclically shifted by m samples to fit

in the user’s allocated sub-carrier indexes beginning at posi-

tion m. Notice that the cyclic shift does the same role as spec-

tral mapping in classical LFDMA, except that here the signals

to be mapped have length N, which explains why we resort to

cyclic shifting to map the symbols into the N-IDFT entries.

In order to allow for flexible spectral mapping, m is not nec-

essarily supposed multiple of M . After N-IDFT processing,

a cyclic prefix of length Ng is appended to the beginning of

each block n of length N . The output samples are then passed

through an ideal digital to analog converter. The duration of

M

U

Fig. 3. Copying: Increasing length from M to U
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Repetition Spectral
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M N
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m
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M N

NNN+Ng
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Fig. 4. LFDMA with general spectral shaping U = N

the block n becomes T = Ts +Tg , where Ts = NTc is the SC-

FDMA symbol duration and Tg = NgTc is the cyclic prefix

duration.

It should be noted that the original LTE SC-FDMA waveform

is a special case of the general spectrally shaped LFDMA,

where the shaping filter is a rectangular window of length

M beginning at index 0 as depicted in Fig. 5. In this case,

the combination of repetition, rectangular shaping and cyclic

shift is equivalent to the sub-carrier mapping presented in LTE

classical SC-FDMA.

When a raised cosine (RC) spectral shaping with a

nonzero roll-off is used, the outputs of the spectral shaping

have more than M non zero elements as depicted in Fig.6.

3. PSD OF GENERAL SPECTRALLY SHAPED

LFDMA

For the following theoretical results, no hypothesis about the

spectral shaping coefficients gk are made. The transmitter

output signal y(t) can be expressed as follows :

y(t) = 1

N

∞

∑
n=−∞

N−1

∑
k=0

xk,ne
2jπ<k+m>N∆f(t−nTg)h(t − nT )

(1)

where ∆f = 1/Ts is the sub-carrier spacing, h(t) is a rect-

angular function with duration T and < a >N designates a

modulo N for a ∈ Z. Taking into account that the outputs

d′k,n = d<k>N ,n , the signal y(t) can be simplified as follows:

y(t) = 1

N

∞

∑
n=−∞

N−1

∑
k=0

xk,ne
2jπ<k+m>N∆f(t−nTg)h(t − nT )

=
1

N

∞

∑
n=−∞

N−1

∑
k=0

d′k,ngke
2jπ<k+m>N∆f(t−nTg)h(t − nT )

=

∞

∑
n=−∞

M−1

∑
r=0

dr,ng
(m)
r (t − nT ) (2)
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Fig. 5. LFDMA waveform with rectangular spectral shaping
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Fig. 6. Raised cosine spectral shaping output

where the last equality results from the Euclidean division of

k as pM + r with p = 0,⋯, L − 1 and r = 0,⋯,M − 1, and

where we define the equivalent filters g
(m)
r (t) as :

g(m)r (t) = L−1

∑
p=0

gpM+re
2jπ<r+pM+m>N∆fth(t) (3)

In order to compute the PSD of y(t), the statistical proper-

ties of the M-DFT outputs dk,n are needed. Since dk,n are

the M-DFT outputs for the i.i.d inputs ck,n, we have dk,n =

∑M−1
p=0 cp,ne

−
2jπkp

M . The inter-correlation of the zero-mean

symbols dk,n where k = 0,⋯,M − 1 satisfies:

E[dk,nd∗k′,n′] =
M−1

∑
p=0

M−1

∑
p′=0

E[cp,nc∗p′,n′]e− 2jπ(kp−k′p′)
M

= { Mσ2
c if k = k′ n = n′

0 elsewhere
(4)

where σ2
c = E[∣cp,n∣2] ∀p, n is the variance of the zero mean

input symbols cp,n. It follows that the output of the M-DFT

block are uncorrelated with variance σ2

d =Mσ2
c .

Let Ryy(t, τ) be the autocorrelation function of y(t) defined

as follows :

Ryy(t, τ) = E[y(t)y∗(t − τ)]
=

1

N2

∞

∑
n=−∞

M−1

∑
r=0

∞

∑
n′=−∞

M−1

∑
r′=0

E[dr,nd∗r′,n′]
g(m)r (t − nT )g∗(m)r′ (t − τ − n′T )

=
Mσ2

c

N2

∞

∑
n=−∞

M−1

∑
r=0

g(m)r (t − nT )g∗(m)r (t − τ − nT )
The expectation and autocorrelation of the signal y(t) verify

E[y(t)] = 0 and Ryy(t, τ) is T-periodic in t. Thus y(t) is

cyclo-stationary and we can define a stationarized autocorre-

lation function Ryy(τ) as :

Ryy(τ) = 1

T
∫

T

0

Ryy(t, τ)dt
=

Mσ2
c

N2T

M−1

∑
r=0
∫
∞

−∞

g(m)r (t)g∗(m)r (t − τ)dt
=

Mσ2
c

N2T

M−1

∑
r=0

R(m)grgr
(τ) (5)

where R
(m)
grgr(τ) = ∫ ∞−∞ g

(m)
r (t)g∗(m)r (t− τ)dt is the autocor-

relation function of the equivalent filters g
(m)
r (t).

Thus, the power spectral density of y(t), which is the Four-

rier Transform of the autocorrelation function Ryy(τ), can be

written as follows :

Syy(f) = FT (Ryy(τ)) = Mσ2
c

N2T

M−1

∑
r=0

∣G(m)r (f)∣2 (6)

where G
(m)
r (f) = ∑L−1

p=0 gpM+rH(f− < r+pM +m >N ∆f)
are the transfer functions of filters g

(m)
r (t).

3.a. Application to LFDMA with rectangular spectrum

shaping

In this section, we are interested in the PSD of the classical

LFDMA waveform, which consists of a rectangular spectral

shaping with a response of length M as previously explained

in Fig. 5. We suppose that the user allocated frequencies are

at indexes lM,⋯, (l + 1)M − 1. In this case, the spectrum

shaping coefficients verify gk = 1 if k = 0,⋯,M − 1 and 0

else. The samples xk,n are right-hand cyclically shifted by

m = lM in order to fit into indexes lM,⋯, (l + 1)M − 1. The

output filter transfer functions can be simplified to:

G(lM)r (f) = grH(f− < r+lM >N ∆f)∀r = 0,⋯,M−1 (7)

In order to compare the results of (7) and (6) with the sim-

ulated PSD of an LFDMA signal, we need to point out, as

noted in [8], that the true frequency transfer function of a dig-

ital (sampled) rectangular function of length N is a Dirichlet

3
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Fig. 7. LFDMA power spectral density for rectangular spec-

tral shaping (N=512, M=16)
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Fig. 8. Zoom on the central lobe of LFDMA power spectral

density for rectangular spectral shaping (N=512, M=16)

kernel given by:

sincN(w) =
⎧⎪⎪⎨⎪⎪⎩
−1

w(N−1) if w ∈ Z

sin(Nw/2)
Nsin(w/2)

otherwise
(8)

As such, the transfer function of the simulated sampled

rectangular function of length N + Ng is H(f) = (N +
Ng)sincN+Ng(2πf).
Fig. 7 plots the obtained PSD for the classical LFDMA sys-

tem with N = 512, M = 16, m = 10M and Ng = 0. The

LFDMA transmitter is based on the original LTE LFDMA

scheme. The simulated PSD was obtained using a Welch

periodogram estimator. A zoom on the central lobe of the

PSD in Fig. 8 shows a good match between the simulated and

theoretical curves.

3.b. Application to LFDMA with raised cosine spectrum

shaping

In this section, we are interested in computing the PSD of

LFDMA where a raised cosine spectral shaping with roll-off
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Fig. 9. Zoom on the central lobe of LFDMA power spec-

tral density for raised cosine spectral shaping with (α = 0.5,

N=512, M=16)
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Fig. 10. SS-IFDMA system model

α is applied. Let Mα = ⌊αM
2
⌋ where ⌊.⌋ denotes the floor

operator. Since 0 ≤ α ≤ 1, the number of non zero shaping

coefficients varies between M and 2M . More specifically, the

shaping coefficients gk verify :

gk { ≠ 0 if k = {0,⋯,M +Mα − 1} ∪ {N −Mα,⋯,N − 1}
= 0 else

Fig. 6 shows the outputs xk,n with a raised cosine spectral

shaping before being shifted to the assigned frequency in-

dexes. The frequency responses of the equivalent filters can

be simplified as in (9).

Fig. 9 shows obtained PSD for the LFDMA system with RC

spectrum shaping using a roll-off α = 0.5 and the same other

parameters as in the previous section. Again, there is a good

match between simulated and theoretical curves.

4. PSD OF SPECTRALLY SHAPED IFDMA

IFDMA is an SC-FDMA variant based on an interleaved

spectral mapping of the user’s symbols. Let us consider the

SS-IFDMA waveform depicted in Fig. 10. We shall re-

strict our analysis to the case where the length of the spectral

shaping window does not exceed M . SS-IFDMA actually

consists of upsampling the spectrally shaped M-DFT out-

puts by a factor L followed by a frequency shift m to meet

the user’s assigned frequencies at indexes pL + m where

p = 0,⋯,M − 1. Again the classical IFDMA is a special

case of SS-IFDMA, where spectrum shaping is a rectangular

window of length M . This results in a new decomposition of

the N-IDFT output signal y(t) as:

y(t) = 1

N

∞

∑
n=−∞

M−1

∑
r=0

grdr,ne
2jπ(rL+m)∆f(t−nTg)h(t − nT )
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G(m)r (f) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

grH(f− < r +m >N ∆f) + gM+rH(f− <M + r +m >N ∆f) if r = 0,⋯,Mα − 1

grH(f− < r +m >N ∆f) if r =Mα,⋯,M −Mα − 1

grH(f− < r +m >N ∆f) + g(L−1)M+rH(f− < (L − 1)M + r +m >N ∆f) if r =M −Mα,⋯,M − 1

(9)
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Fig. 11. IFDMA power spectral density (N=512, M=16)

The stationarized autocorrelation Ryy(τ) of y(t) is derived

following the same steps as in section 3:

Ryy(τ) = Mσ2
c

N2T

M−1

∑
r=0

∣gr ∣2e2jπ(rL+m)∆fτRhh(τ) (10)

where Rhh(τ) = ∫ ∞−∞ h(t)h∗(t − τ)dt.
Thus, the PSD of the SS-IFDMA signal can be written as fol-

lows:

Syy(f) = Mσ2
c

N2T

M−1

∑
r=0

∣grH(f − (rL +m)∆f)∣2 (11)

Fig. 11 and Fig. 12 show the spectrum of classical IFDMA

i.e. using a spectrum shaping satisfying gk = 1∀k = 0,⋯,M−

1. We observe a good match between theoretical and simu-

lated PSD.

5. CONCLUSION

This paper presented a general model of spectrally shaped

SC-FDMA system. The proposed model has the advantage of

a high flexibility in the representation of different implemen-

tations of spectral shaping either for LFDMA or for IFDMA.

Based on this model, we derived analytical expressions of

PSD of spectrally shaped SC-FDMA schemes including the

classical non spectrally shaped schemes. The analytical ex-

pressions were drawn for a single user but can be easily ex-

tended to the general case of multiple independent users.
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Fig. 12. Zoom on the central lobe of IFDMA power spectral

density (N=512, M=16)
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