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ABSTRACT
In this work, we introduce a computationally efficient Kalman-
filter based implementation of the robust widely linear (WL)
minimum variance distortionless response (MVDR) beam-
former. The beamformer is able to achieve the same per-
formance as the recently derived robust WL MVDR beam-
former, but avoids the computationally burdensome solution
based on a second order cone programming (SOCP), and
exploiting the recent Kalman-based regular robust MVDR
beamformer, extends this to also allow for non-circular
sources and interferences. Numerical simulations illustrate
the achieved performance.

Index Terms— Widely linear estimation, robust Capon
beamforming, constrained Kalman filter, time-variant filter-
ing, non-circular signals

1. INTRODUCTION

Adaptive beamforming plays an important role in a large vari-
ety of applications, including, for example, wireless commu-
nications, radar, sonar, astronomy, seismology, medical imag-
ing and microphone array speech processing [1–5]. Most of
the commonly used optimal beamformers belong to a class
of linear time-invariant filters that are developed under the
implicit assumption that the measured signal is second order
(SO) circular [6]. This includes the well-known Capon’s min-
imum variance distortionless response (MVDR) beamformer
and its many robust variants (see, e.g., [7] and the references
therein), all of which are known to perform well when the
measured signal is indeed SO circular [8]. Unfortunately,
the SO circularity assumption does not hold true for many
signals of practical importance. For instance, many signals
in radio communication systems, such as amplitude modula-
tion (AM), binary phase-shift keying (BPSK), and minimum
shift keying (MSK) are in fact non-circular, and the applica-
tion of standard linear beamformers to these signals leads to
suboptimal performance [9]. To better deal with non-circular
signals, several optimal widely linear (WL) MVDR beam-
formers have been developed in the last decade, exploiting
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the information contained in the complementary covariance
matrix, describing the dependence between the signal and its
complex conjugate (see, e.g., [9, 10]). While these optimal
WL MVDR algorithms outperform their linear counterparts
when the measured signal is non-circular, they, similarly to
linear MVDR methods, exhibit extreme sensitivity to mis-
match between the assumed and the actual array responses
to the signal-of-interest (SOI). In practical applications, such
mismatches typically take place due to look direction errors,
array calibration errors, mutual coupling, or limited sample
support. In a more recent work, robust WL beamformers that
allows for the typical pointing errors in the assumed steering
vector of the SOI have been developed and shown to lead to
improved performance [11]. However, an important limita-
tion of the developed robust WL beamformers is their high
computational complexity, often making online implementa-
tion infeasible. To alleviate this problem, we here introduce a
computationally efficient robust WL MVDR by generalizing
the Kalman-filter based standard robust beamformer of [12]
to also allow for non-circularity of both the SOI and the in-
terferers. This is achieved by exploiting the complementary
covariance matrix of the measured signal and by introduc-
ing additional constraints based on the non-circularity of the
SOI. Using realistic BPSK signals, the proposed approach,
hereafter referred to as the Kalman-based WL robust Capon
beamformer (KWL-RCB), is shown to achieve similar perfor-
mance as the robust WL beamformers of [11], hereafter WL-
RCB, albeit at a much reduced computational cost. A further
advantage of the proposed approach, is its ability to handle
both stationary and non-stationary interference sources.

2. ROBUST WL MVDR BEAMFORMER

Consider an array of L sensors, receiving a narrow-band sig-
nal, s(t), corrupted by noise and other interferences, such that
the L× 1 snapshot vector for the array can be detailed as

x(t) = s(t)a + n(t) (1)

where t denotes the time index, t = 1, . . . ,M , s(t) the com-
plex envelope of the SOI, a ∈ CL×1 the complex steering vec-
tor of the SOI, and n(t) represents the interference-plus-noise
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component. Allowing both the SOI and the interferences to
be SO non-circular, and assuming that the interferences are
zero-mean and uncorrelated with the SOI, the full SO statis-
tics of the x(t) may be given in terms of its covariance ma-
trix, Rx ∈ CL×L, and its complementary covariance matrix,
Cx ∈ CL×L, as

Rx , E
{
xtx

H
t

}
= πsaa

H + Rn , Rs + Rn (2)

Cx , E
{
xtx

T
t

}
= πsγsaa

T + Cn , Cs + Cn (3)

where (·)T and (·)H denote the transpose and the Hermi-
tian transpose, respectively. Here Rn = E

{
n(t)n(t)H

}
and

Cn = E
{
n(t)n(t)T

}
represents the covariance and the com-

plementary covariance matrices of nt, respectively, whereas
πs = E

{
|s(t)|2

}
and γs = E

{
s(t)2

}
/πs denotes the power

of the signal s(t) and the non-circularity coefficient of the
SOI, respectively. The non-circularity coefficient, γs, gives a
measure of the non-circularity of the SOI, with γs = 0 rep-
resenting a SO circular source, whereas γs = 1 indicates that
the SOI is on a line in the complex plane. Furthermore, by
virtue of its definition, |γs| ≤ 1. It is worth noting that, in the
case when x is SO stationary, γs = 0 and Cn = 0, and conse-
quently, the complementary covariance matrix Cx vanishes,
leading to the standard linear case. Given x(t), the commonly
used linear MVDR (Capon) beamformer gives the output

y(t) = wHx(t) (4)

where the linear time-invariant filter, w ∈ CL×1, is formed by
minimizing the output power of the filter, while constraining
the filter to have unit gain in the look direction, i.e.,

ŵopt = arg min
w

wHRxw s.t. wHa = 1 (5)

= R−1x a
(
aHR−1x a

)−1
(6)

where Rx is typically replaced by the outer-product sample
covariance matrix estimate. As is clear from (5), the stan-
dard MVDR formulation does not take the complementary
covariance matrix Cx into account, and therefore, not sur-
prisingly, suffers from severe performance degradation when
the signal is non-circular. To remove this deficiency, and to
exploit the possible non-circularity of the measured signal, a
WL MVDR technique was introduced in [10], reformulating
the minimization to instead operate on the augmented snap-
shot vector, x̃(t), defined as

x̃(t) =
[
x(t)T x(t)H

]T
(7)

= s(t)ã1 + s∗(t)ã2 + ñ(t) (8)

where ã1 =
[
aT 0TN

]T
, ã2 =

[
0TN aT

]T
, and with

(·)∗ denoting the complex conjugate. The SO statistics for the
augmented snapshot may then be given as

Rx̃ =

[
Rx Cx

C∗x R∗x

]
=

[
Rs Cs

C∗s R∗s

]
+

[
Rn Cn

C∗n R∗n

]
, Rs̃ + Rñ (9)

Assuming that the augmented snapshot vector x̃ is passed
through a filter, w̃ ∈ C2L×1, one may, using the above defini-
tions, write the filter output as

y(t) = w̃H x̃(t) = s(t)w̃H ã1 + s(t)∗w̃H ã2 + ñF (t) (10)

where ñF (t) represents the filtered noise sequence. Using (9)
and (10), the WL MVDR beamformer may be formulated as

min
w̃

w̃HRx̃w̃ s.t. w̃HÃ =
[

1 0
]

(11)

where Ã =
[
ã1 ã2

]
, which has the solution [9]

ˆ̃wopt = R−1x̃ Ã
(
ÃHR−1x̃ Ã

)−1 [ 1
0

]
(12)

The resulting WL MVDR beamformer has been shown to
provide better signal-to-noise-and-interference ratio (SINR)
as compared to its linear counterpart, given in (6), when the
measured signal is non-circular [9]. In many applications, the
non-circularity of the SOI may be approximately known, al-
lowing the beamformer to be extended to incorporate such
knowledge. To do so, one may, following [13], decompose γs
and s(t)∗ as

s∗(t) = γ∗ss(t) + πs(1− |γs|)1/2s′(t) (13)

where the signal s′(t) is orthogonal to s(t). Inserting (13) into
(8) yields the augmented snapshot vector

x̃(t) = s(t)(ã1 + γ∗s ã2) +

+ s′(t)
(
πs(1− |γs|)1/2

)
ã2 + ñ(t) (14)

, s(t)ãγ + ñγ(t) (15)

and the WL beamformer output

y(t) = w̃H x̃(t) = s(t)w̃H ãγ + ñFγ (t) (16)

Using (16), the optimal WL MVDR beamformer can thus be
reformulated as [13]

min
w̃

w̃HRx̃w̃, s.t. w̃H ãγ = 1 (17)

taking non-circularity of the SOI into account.

3. PROPOSED KALMAN IMPLEMENTATION

Reminiscent to the standard MVDR beamformer, the result-
ing optimal WL MVDR beamformer will be sensitive to er-
rors in the assumed steering vector of the SOI. In [11], the
WL-RCB was shown to provide improved signal to interfer-
ence plus noise ratio (SINR) performance in case of errors
in the SOI steering vector. Unfortunately, similar to the con-
ventional beamformers, the robust WL beamformers requires
solving a second order cone programming (SOCP) problem,
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Fig. 1. Output SINR as a function of sample length for non-
circular BPSK signals with SNR = 10 dB. Red triangles
and blue asterisks are robust WL beamformers and perform
equally, while the former, the proposed Kalman implementa-
tion, has reduced complexity.

having a complexity of aboutO(L3), restricting their applica-
bility for online or otherwise time-restricted applications. To
alleviate this problem, we here develop KWL-RCB , reminis-
cent of the Kalman-based standard RCB developed in [12],
and thereby also yielding an implementation of complexity
O(L2). To achieve this, is can be noted that the robustness
constraint on ãγ , as given in (17), can be formulated in terms
of the errors in the assumed SOI steering vector, ā, and the
assumed SOI non-circularity coefficient, γ̄s. To do so, let the
true SOI steering vector, a, lie within a small hypersphere of
radius εa, centered around the assumed steering vector , ā, as

‖a− ā‖2 ≤ εa (18)

and, similarly, allow γs to lie on a small interval of radius εγ ,
centered around the assumed value γ̄s, as

|γs − γ̄s|2 ≤ εγ (19)

Using (18) and (19), a necessary constraint on ãγ may be
formulated as [11]

ε1 = ‖ãγ − ¯̃aγs‖2 (20)

=

∥∥∥∥[ a− ā
γ∗sa
∗ − γ̄s∗ā∗

]∥∥∥∥2 (21)

≤ ‖a− ā‖2 + ‖γ∗sa∗ − γ̄s∗ā∗‖2 (22)

≤ εa +
(
γ̄s
√
epsilona +

√
N
√
εγ +

√
εa
√
εγ

)2
(23)

Imposing the constraint in (20) on the minimization in (17),
and carrying out algebraic manipulations similar to those in
[14], leads to the worst-case robust WL MVDR formulation

min
w̃

w̃HRx̃w̃ s.t. w̃H ãγ ≥
√
ε1||w̃||+ 1 (24)
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Fig. 2. Output SINR as a function of sample length for non-
circular BPSK signals with SNR = −10 dB. Red triangles
and blue asterisks are robust WL beamformers and perform
equally, while the former, the proposed Kalman implementa-
tion, has reduced complexity.

which may be rewritten as an equivalent minimum mean
square error (MMSE) estimation problem for the augmented
weight vector

min
w̃

E
[
|0− x̃(k)Hw̃(k)|2

]
s.t. h2(w̃(k)) = 1 (25)

where the cost function penalizes the deviation of the beam-
former output from an ideal (zero) signal, and

h2(w̃(k)) = ε1w̃
Hw̃ −

∣∣w̃H ãγ
∣∣2 + w̃H ãγ + ãHγ w̃ (26)

Reminiscent to the derivation in [12], one may thus use this
reformulation to derive an efficient Kalman-filter based im-
plementation of (25), by letting the weight vector of the robust
WL MVDR, w̃(k), evolve as a first-order Markov process

w̃(k + 1) = λw̃(k) + e(k) (27)

where e(k) denotes a zero-mean white Gaussian innovation
process, with covariance matrix Q = E

{
e(k)e(k)H

}
=

σ2
sI2M , with λ denoting a user parameter. The observed states

then details the filter output and the mismatch of the assumed
ãγ , such that

z ,

[
0
1

]
=

[
w̃(k)H x̃(k) + v1(k)
h2(w̃(k)) + v2(k)

]
(28)

, h(w̃(k)) + v(k)

where v1(k) and v2(k) are assumed to be independent zero-
mean white Gaussian noise processes with SO statistics

Rv = E
{
v(k)v(k)H

}
=

[
σ2
1 0

0 σ2
2

]
(29)

Since the observation equation in (28) is non-linear in the es-
timation vector w̃(k), the SO extended Kalman filter of [15]

3
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Fig. 3. Output SINR as a function of sample length for non-
stationary BPSK signals at SNR = 10 dB. At N = 200
the arrival direction of the interference change and the beam-
formers tries to adjust correspondingly. The figure shows how
Kalman based beamformers deals with non-stationarity faster
than SOCP based beamformers.

may be used to find the recursive update equation for the
adaptive w̃(k) estimates as

ˆ̃w(k) = λ ˆ̃w(k − 1) + Gk (z − ẑ(k|k − 1)) (30)

where G(k) is the Kalman filter gain

G(k) = P(k|k − 1)∇w̃h(λ ˆ̃w(k − 1))S(k)−1 (31)

and where ẑ(k|k−1) denote the one-step prediction of the ob-
servation, given by (32), given at the top of next page, where
P(·) and S(k) are the weight vector and the innovation co-
variance matrices, respectively, being formed as (33), given
at the top of next page, and

P(k|k − 1) = λ2P(k − 1|k − 1) + Q (34)

where ∇w̃h(w̃(k)) and ∇2
w̃h(w̃(k)) are the first and second

order derivatives of h with respect to w̃, given by

∇w̃h(w̃(k)) =

[
x̃(k)H

ε1w̃(k)H −
(
ãγ ã

H
γ w̃(k)

)H
+ ãHγ

]

∇2
w̃h(w̃(k)) =

[
02M

ε1I2M − ãγ ã
H
γ

]
,

[
∇2

w̃h(1)

∇2
w̃h(2)

]
Finally, the covariance matrix of the weight vector may be
updated as

P(k) = P(k|k − 1)−G(k)S(k)G(k)H (35)

The user parameters λ and σ2
s should be chosen to reflect the

operating environment, e.g., for non-stationary signals one
may choose λ ≥ 1 and σ2

s > 0, to allow for the optimal
weight vectors to change over time.

4. NUMERICAL RESULTS

In this section, we examine the performance of the proposed
KWL-RCB, examining the output SINR, which for WL fil-
ters, taking the non-circularity into account, is given as [13]

SINR(w̃) =
πs|w̃H ãγ |2

w̃Rñγ w̃
(36)

and analogously for the linear beamformers. Similarly, the
optimal output SINR is defined as

SINR(w̃opt) = πsã
H
γ R−1ñγ

ãγ (37)

and, again, analogously for the linear beamformers. Initially,
we consider a uniform linear array (ULA), with L = 2 sen-
sors, on which two BPSK signals impinge, originating from
direction 0◦ and 30◦, respectively, being corrupted by a tem-
porally and spatially white noise. The signal-to-noise ratio
(SNR), defined as σ2σ−2n , where σ2 and σ2

n denote the sig-
nal and noise power, respectively, of the two signals are 10
dB respective 20 dB. The first source is deemed to be the
SOI, and has a non-circularity coefficient of γs = −0.5 +
i0.866, whereas the second source, deemed to be an interfer-
ence source, has a non-circularity coefficient of γn = 1. A
total of N = 500 measurements at SNR = 10 dB are used
to form the estimate, which is more than enough to reach
convergence. To evaluate the robustness of the beamformer,
the assumed steering vector is set to 3◦ and the mismatch in
non-circularity is randomly set to 0.001, consequently giv-
ing ε1 as in (20). Figure 1 shows the output SINR of four
different beamformers, namely the KWL-RCB, as compared
with the WL-RCB [11] , and, as a comparison, the linear
Kalman RCB [12] and the regular RCB [16]. The beamform-
ers are compared to the theoretically optimal SINRs, being
{15.87, 10.02} dB, which is an upper limit if there would
be no mismatch in a and γs. As seen from the figure, both
KWL-RCB and the WL-RCB perform equally well, and sim-
ilarly to what is shown in [12], this also holds for the the
linear beamformers. Performance is thus shown to be main-
tained although the Kalman-based beamformers have reduced
complexity, allowing for an efficient time-updating of the es-
timates as additional samples becomes available.

For the same simulation setting, only changing the sig-
nal power to be SNR = −10 dB, figure 2 shows the SINR
of the four beamformers introduced, yielding consequent re-
sults. The theoretically optimal SINRs are in this setting
{−4.21,−7.59} dB, and for both simulations, we have set
σ2
1 = ||w̃||2(2Lσ2 + σ2

n), σ2
2 = 0.2, λ = 1, and, as the

DOA of the BPSK signals are not expected to change over
time, σ2

s = 0.
Extending the signal environment to allow for non-

stationarity, the same signals as above are simulated up to
N = 200, when the arrival direction of the interfering BPSK
signal instantaneously changes from 30◦ to −30◦. To allow
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ẑ(k|k − 1) =

[
λx̃(k)H ˆ̃w(k − 1)

h2(λ ˆ̃w(k − 1))− 1
2 tr
(
∇2

w̃h(2)P(k|k − 1)
) ]

(32)

S(k|k−1) = ∇w̃h(λ ˆ̃w(k−1))P(k|k−1)·∇w̃h(λ ˆ̃w(k−1))H+
1

2

[
0 0
0 1

]
tr
(
∇2

w̃h(2)P(k|k−1)·∇2
w̃h(2)P(k|k−1)

)
+Rv

(33)

for the possibility of such changes, σs is set to 10−6, trading
of stability for ability to change over time. Figure 2 shows
how KWL-RCB is able to adjust faster to non-stationary
changes than the SOCP-based WL-RCB. Throughout the
simulations, we have, as was done in [11], set the error
bounds as ε̆1 = 1.2 · ε1, and ε̆a = 1.2 · εa. Although, as
was shown in [11, 16], the performance of the discussed
beamformers is relatively insensitive to this choice.
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