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ABSTRACT

The paper applies a recently developed Consensus Gaus-
sian Mixture - Cardinalized Probability Hypothesis Density
(CGM-CPHD) filter to distributed multitarget tracking with
range and/or Doppler sensors. It is demonstrated via simu-
lation results on realistic scenarios that the use of Doppler
measurements provides a significant tracking performance
improvement with respect to using low-accuracy range mea-
surements only. On the other hand, effective distributed
Doppler-only multitarget tracking is still an open issue to be
investigated.

Index Terms— Multitarget tracking; distributed tracking;
sensor networks; Doppler measurements.

1. INTRODUCTION

Doppler-shift measurements are easy to obtain and can pro-
vide valuable information, if properly exploited, for target
tracking purposes. In many practical situations, it is possi-
ble to deploy over the area of interest several units equipped
with on-board capabilities of receiving target echoes, mea-
suring the Doppler-shift and/or the time-of-arrival of such
echoes (and hence the range rate and/or range of the echoing
targets), exchanging data with neighboring units as well as
processing local data so as to setup a low-cost and passive dis-
tributed surveillance network. The objective is that each node
of the network be able to gain the global situation awareness
(i.e. knowledge of the number of moving targets and their
position, velocity, etc.) in a fully distributed and scalable
way. To this end, in [1] an efficient distributed consensus-
based multitarget multisensor tracker, named CGM-CPHD
(Consensus Gaussian-Mixture Cardinalized Probability Hy-
pothesis Density) filter, has been developed and its perfor-
mance has been thoroughly analysed with heterogeneous
surveillance networks made up of angle-only and/or range-
only sensors. The aim of the present paper was to investigate
whether CGM-CPHD can satisfactorily cope with the more

difficult Doppler-only tracking problem. In this respect, the
case study considered in this work, involving a surveillance
network with range and/or Doppler sensors, allows to con-
clude that (1) the use of Doppler measurements provides
indeed a significant tracking performance improvement with
respect to using low-accuracy range measurements only but
(2) Doppler-only multitarget tracking is still an open issue to
be investigated.

2. DISTRIBUTED MULTITARGET TRACKING
(DMTT)

2.1. Network model

It is assumed that the surveillance network used for multi-
target tracking consists of heterogeneous and geographically
dispersed nodes with processing, communication and sensing
capabilities. More specifically, each node can process local
data as well as exchange data with the neighbors and can get
measurements of kinematic variables (e.g., angles, distances
and/or Doppler shifts) relative to targets moving in the sur-
rounding environment. It is also assumed that the netwok has
no central fusion node and that its nodes are unaware of the
overall network topology. From a mathematical point of view,
the network is represented by a directed graph G = (N, A)
where N is the set of nodes and A C N x A the set of arcs,
representing links (connections). In particular, (4, j) belongs
to A if node j can receive data from node . For each node
jeEN, NI = {i € N': (i,j) € A} denotes its set of neigh-
bors, i.e. the set of nodes from which node j can receive data.
By definition, (j,7) € .A for any node j € N and, hence,
j € N7 for all j. The total number of nodes in the network

will be denoted by N 2 |V, the cardinality of V.

2.2. Representation of multitarget information

The nodes of the surveillance network need to locally update,
exchange and fuse information on the number of targets in the



scene as well as their kinematic (position-velocity) states. For
computational and communication efficiency, a parsimonious
representation of such a multitarget information is advocated.
To this end, a possible representation is made up of:

1. the cardinality distribution p(n) defined, for any integer
n > 0, as the probability that there are n targets in the
scene;

2. the intensity function d(x), also called Probability Hy-
pothesis Density (PHD) [2, 3], that quantifies the den-
sity of targets at the state x.

Without loss of generality, the PHD can be expressed as
d(x) = ms(x) where 10 2 >, np(n) is the expected num-
ber of targets and s(-) is the location function such that
J s(x)dx = 1. In this paper, following [1], multitarget in-
formation is represented by the cardinality distribution p(-)
and by the location function s(-) that are jointly referred
to as the Cardinalized PHD (CPHD) [4]. From the CPHD,
the estimated number of targets is typically obtained from
the cardinality distribution according to the MAP criterion
as . = max, p(n) while the target state estimates are ex-
tracted as peaks of the location function s(-). Notice that both
p(-) and s(-) are, in principle, infinite-dimensional so that,
for implementation purposes, finitely-parameterized repre-
sentations of both need to be adopted. For the cardinality
distribution p(n), it is enough to assume a sufficiently large
maximum number of targets n,,,, in the scene and restrict
p(-) to the finite subset of integers {0,1,...,7pqz}. Con-
versely, for the location function, two representations based
on the particle or Monte Carlo (MC) or, respectively, Gaus-
sian Mixture (GM) approaches are most commonly adopted.
In this work, the GM approach is followed by expressing
location functions as linear combinations of Gaussian com-
ponents, i.e.,

Ng
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The reason of this choice is that for DMTT over a sen-
sor network, typically characterized by limited processing
power and energy resources of the individual nodes, it is of
paramount importance to reduce as much as possible local
(in-node) computations and inter-node data communication.
In this respect, the GM approach is certainly more parsimo-
nious (usually the number of Gaussian components involved
is orders of magnitude lower than the number of particles
required for a reasonable tracking performance) and hence
preferable. In summary, multitarget information is compactly
characterized by the following quantities
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2.3. Local update of multitarget information

In each node ¢ of the network, the local CPHD, i.e. the pair
(p'(-),s'(+)), is updated in time exploiting the multitarget
dynamics (which accounts for target motion, birth and death)
and then corrected with the current local measurements ex-
ploiting the measurement model (which accounts for true
measurement and clutter generation, missed detections). This
local update can be carried out by the CPHD filter [4]. The
resulting CPHD recursions (prediction and correction) are as
follows
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where: pp +(-) is the assumed birth cardinality distribution;
Pg1—1(+) is the assumed survival probability; 7,1 (-) is the
cardinality distribution of survived targets, given by
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dp(-) is the assumed PHD function of new-born targets;

Pyi—1(x|€) is the state transition PDF associated to the

single target dynamics x = f;_1(&,w); the generalized

likelihood functions £? (-, -, ) and Ly, (-) have cumbersome

expressions which can be found in [4].
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2.4. Fusion of multitarget information

The local CPHDs (p', s*) of the various nodes i € A" should
be consistently fused into a sort of average CPHD (P, 53).
In [1] an information-theoretic, Kullback-Leibler, average
of multitarget distributions has been defined and it has been
shown that this average actually coincides with the Gen-
eralized Covariance Intersection (GCI) fusion [5, 6]. The
resulting averaged (fused) CPHD is given by
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Notice that the fused location function 3(+) is the geometric
mean of the node location functions s*(-) while the fused car-
dinality p(-) is obtained by (4) which also involves the node
location functions besides the node cardinality distributions.
In [1] it has been shown that the geometric mean of Gaussian
mixtures (GMs) is no longer a GM so that, in order to preserve
the GM form of the location function, a suitable approxima-
tion has been devised. Please refer to [1] for the details of
the approximate fusion of GMs; it is worth to point out that
such an approximate fusion of two GMs s%(-) and s°(-), with
N¢ and respectively Ng; components, produces a fused GM
s(+) with N& N2 components, one for each pair of Gaussian
components of the fusing GMs.

3. SCALABLE MULTITARGET FUSION VIA
CONSENSUS

In order to carry out the collective fusion (3)-(4) in a fully
distributed and scalable way, a consensus approach can be
exploited [7]. The idea of consensus is the following: to per-
form fusion of the CPHDs (p’, s*) over the whole network,
regional fusions are iteratively carried out in each node 7 over
the sub-network of neighbors A'?. The generic CPHD con-
sensus iteration can be summarized as follows:
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where the consensus weights must satisfy

Z Wi =1 VieN.
JEN

wh >0 Vi, jeN;

and the consensus iterations are inizialized by s{(-) = s(-)
and pi(-) = p'(-). Let £ denote the N x N consensus ma-
trix whose generic (4, j) element coincides with the consen-
sus weight wh if 5 € N, or is taken as 0 otherwise. In [1]

it is shown that if the consensus weights are chosen so that
the matrix €2 is doubly stochastic and if the network (graph)
G is strongly connected, i.e. for any pair of nodes 7 and j
there is a directed path from ¢ to j, then the regional average
(ph, sb), in each node i, tends to the collective average (P, 3)
as { — oo. Notice that the above consensus step is nothing
but a weighted average of CPHDs over a restricted subset of
neighboring nodes and is, therefore, scalable with respect to
the network size.

4. CONSENSUS MULTITARGET TRACKER

This section presents the proposed CGM-CPHD filter algo-
rithm [1]. The sequence of operations carried out at each
sampling interval ¢ in each node i € N of the network is
reported in Table 1. All nodes ¢ € N operate in parallel at
each sampling interval ¢ in the same way, each starting from
its own previous estimates of the cardinality distribution and
location function in GM form, i.e.

eV Lol %P ().
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and producing, at the end of the various steps listed in Table
1, its new estimates of the CPHD as well as the target state
estimates, i.e.
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A brief description of the various steps of the CGM-CPHD
algorithm follows below.

1. First, each node ¢ performs a local GM-CPHD filter up-
date exploiting the multitarget dynamics and the local
measurement set. The details of the GM-CPHD up-
date (prediction and correction) can be found in [4]. A
merging step [3, section III.C, table II] is introduced
after the local update and before the consensus phase
in order to reduce the number of Gaussian components
and, hence, alleviate both the communication and the
computation burden.

2. Then, consensus takes place in each node % involving
the subnetwork N/*. Each node exchanges information
(i.e., cardinality distribution and GM representation of
the location function) with the neighbors and carries out
the GM-GCI fusion in (5)-(6) over . This procedure
is repeatedly applied for an appropriately chosen num-
ber L > 1 of consensus steps.

3. After the consensus, the resulting GM is further simpli-
fied by means of a pruning step [3, section III.C, table
I1]. Finally, an estimate of the target set is obtained from
the cardinality distribution and the pruned location GM
via an estimate extraction step [3, section III.C, table
II1].



A detailed description of the overall algorithm can be found
in [1].

Table 1: Consensus GM-CPHD pseudo-code

procedure CGM-CPHD(NODE ¢, TIME t)
LOCAL GM-CPHD PREDICTION
LOCAL GM-CPHD CORRECTION
MERGING

for/=1,...,Ldo
INFORMATION EXCHANGE
GM-GCI FUSION OVER N
MERGING

end for

PRUNING
ESTIMATE EXTRACTION
end procedure

Recently, it has been shown [8] that multisensor PHD
is asymptotically optimal increasing the number of sensors.
This theoretical result cal legitimate the development of effi-
cient algorithms (like, e.g., CGM-CPHD) which implement
the multisensor fusion using the PHD.

5. RANGE-DOPPLER CASE STUDY

In this section, the CGM-CPHD algorithm is applied on a re-
alistic scenario for distributed multitarget tracking by exploit-
ing range and/or Doppler measurements. A 2-dimensional
(planar) multitarget tracking scenario is considered over a
surveillance area of 50 x 50[km?], wherein 6 targets are
present at different times and a network of 4 Range-Doppler
sensors is deployed. A pictorial view of the aforementioned
scenario is depicted in Fig. 1.

The target state is denoted by x = [z, &, v, y]T where
(x,y) and (&,9) represent the target Cartesian position and,
respectively, velocity components. The motion of targets
is modeled by the filters according to the discrete nearly-
constant velocity model [9] with process noise standard devi-
ation o, = 2[m/s?] and sampling interval T = 5]s].

As it can be seen from Fig. 1, the sensor network consid-
ered in the simulation consists of 4 Range-Doppler sensors
characterized by the following measurement functions:
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where (z%,%") represents the known position of sensor i;
Doppler measurements are characterized by carrier frequency
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Fig. 1: Pictorial view of the 4 Range-Doppler sensor networkxa:rold of
the 6 target trajectories considered in the simulations. Sensors are
denoted with a blue x while the start/end point for each trajectory is
denoted, respectively, by ¢ /H.

fr = 0.9[GH?z], i.e. wavelength A = 0.33|m], and standard
deviation of measurement noise equal to op = 0.5[Hz];
the standard deviation of range measurement noise is o =
500[m]. Please notice the inaccuracy of range measurements
(cfr. or). Because of the non linearity of the aforementioned
sensors, the Unscented Kalman Filter (UKF) [10] is exploited
in each sensor in order to update means and covariances of
the Gaussian components.

Clutter is generated as a Poisson Process with param-
eter A, = 1 and uniform spatial distribution over, re-
spectively, the surveillance area and the frequency interval
[—1000, 1000] [Hz]; the probability of target detection is
P; =0.99.

Target birth is modeled and assumed in two possible dif-
ferent locations, described by the following intensity function

dp(x) = a1 N (z;%1,P1) + as N (25 %2, Ps)

ap = ag =0.15

%1 = [5000, 0, 15000, 0]" %, = [5000, 0, 30000, 0]"
P, = P, = diag (500%, 100%, 5007, 100?)

Three different situations have been considered, i.e.
Doppler-only, Range-only and Range-Doppler tracking. Un-
fortunately it has been found that, in the Doppler-only case,
the CGM-CPHD filter is unable to track targets; hence per-
formance has been compared for the other two, Range-only
and Range-Doppler, cases.

Multitarget tracking performance is evaluated in terms of
the OSPA (Optimal SubPattern Analysis) metric [11]. The
reported metric is averaged over N,,. = 200 Monte Carlo
trials for the same target trajectories but different, indepen-
dently generated, clutter and measurement noise realizations.
The duration of each simulation trial is fixed to 500(s] (100



samples).

The parameters of the CGM-CPHD filter (see [1] for
their definition) have been chosen as follows: the survival
probability is Ps = 0.99; the maximum number of Gaus-
sian components is N, = 25; the merging and truncation
thresholds (see [1]) are 7,, = 16 and v, = 10™%; Metropolis
weights [7] have been adopted for consensus.

Fig. 2 reports the OSPA metric (with Euclidean distance,
p = 2, and cutoff parameter ¢ = 600), respectively, for
Range-only (red dashed line) and Range-Doppler (green solid
line) scenarios. As it can be seen, the performance obtained
with Range-Doppler measurements is significantly better then
with Range-only measurements. The results of Figs. 2 and
3 also show that, by just applying a single consensus step,
performance of the distributed algorithm exploiting Range-
Doppler measurements is satisfactory for both estimation and
cardinality errors.
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Fig. 2: Performance comparison, ﬁsing OSPA, between Range-only
and Range-Doppler CGM-CPHD with L = 1 consensus steps.
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Fig. 3: Cardinality performance for Range-Doppler CGM-CPHD
with L = 1 consensus step.

6. CONCLUSIONS

It has been demonstrated that it is possible to realize an ef-
fective distributed surveillance system by connecting sensors

that provide Doppler-shift measurements only if some, possi-
bly inaccurate, range measurements are also available. Dis-
tributed Doppler-only multitarget tracking, on the other hand,
needs to be further investigated in that the currently employed
local filtering and fusion algorithms still provide an unsatis-
factory behavior.
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