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ABSTRACT

The present paper offers a link between fixed point the-
ory and thresholding; one of the key enablers in sparsity-
promoting algorithms, associated mostly with non-convex
penalizing functions. A novel family of operators, the par-
tially quasi-nonexpansive mappings, is introduced to provide
the necessary theoretical foundations. Based on such fixed
point theoretical ground, and motivated by hard thresholding,
the generalized thresholding (GT) mapping is proposed that
encompasses hard, soft, as well as recent advances of thresh-
olding rules. GT is incorporated into an online/time-adaptive
algorithm of linear complexity that demonstrates competi-
tive performance with respect to computationally thirstier,
state-of-the-art, RLS- and proportionate-type sparsity-aware
methods.

Index Terms— Thresholding, sparsity, fixed point theory,
adaptive filtering.

1. INTRODUCTION

Thresholding, the operation of nullifying small components
of an L × 1 vector a while shrinking or leaving intact the
others, is one of the key enablers of sparsity-promoting algo-
rithms [1,2]. It is by now well-established that hard threshold-
ing (HT), a discontinuous operator, tends to introduce large
variance on estimates [3–5]. On the other hand, the contin-
uous soft thresholding (ST) operator has the tendency to in-
crease bias [3–5]. To overcome these drawbacks, alternative
thresholding rules have been proposed [4–9]. These advances
in thresholding operators are strongly connected to optimiza-
tion tasks; they are obtained by penalizing squared error terms
by, usually, non-convex losses.

This paper establishes a link between thresholding and
fixed point theory [10] by introducing a novel family of oper-
ators; the partially quasi-nonexpansive mappings. Motivated
by HT and the established theoretical framework, a gener-
alized thresholding (GT) operator is introduced that encom-
passes HT, ST, as well as recent advances in [3,5,7,8]. GT is
incorporated into the adaptive projection-based generalized

thresholding (APGT) algorithm to address system identifica-
tion tasks in online/time-adaptive settings, i.e., the scenario
where training data arrive sequentially, they are only utilized
for a limited number of times, and the system to be iden-
tified may be time-variant. Extensive numerical examples
suggest that APGT offers competitive performance to RLS-
type sparsity-promoting algorithms, while it outperforms
computationally thirstier, state-of-the-art proportionate-type
techniques.

2. MODEL DEFINITION

Assume a (separable) Hilbert spaceH∗, equipped with an in-
ner product 〈·, ·〉, and induced norm ‖·‖ :=

√
〈·, ·〉.

Discussion revolves around the following model, linear in
an unknown system f∗ ∈ H∗,

yn = 〈f∗, hn〉+ ηn, n ∈ N, (1)

where (yn, hn)n∈N ∈ R ×H∗ is the set of training data, and
(ηn)n∈N stands for the noise process. The objective of this
short paper is identification of the generally non-linear object
f∗, given the side information that f∗ admits a sparse repre-
sentation in some linear subspace H of H∗. An example is
the case where f∗ is sparse in the subspace of band-limited
functions. If PH stands for the orthogonal projection ontoH,
then by 〈f∗, hn〉 = 〈f∗, PH(hn)〉 [10, Coroll. 3.22.ii], it suf-
fices to perform the following discussion in H, instead of the
largerH∗, and by abusing notation, hn to denote PH(hn).

Example 1. In the case where H is a reproducing kernel
Hilbert space (RKHS) [11], equipped with a kernel κ, the in-
ner products in (1) can be readily available. Recall that H is
RKHS iff there exists a (unique) kernel function κ(·, ·) : Rp×
Rp → R (p ∈ N∗) such that (i) κ(·, t) ∈ H, and (ii) the repro-
ducing property holds: 〈f, κ(·, t)〉 = f(t), ∀(f, t) ∈ H×Rp.
Indeed, if hn := κ(·, tn), then 〈f∗, hn〉 = f∗(tn), which is
nothing but the evaluation or sampling of f∗ at tn, ∀n.

Assumption 1. H is assumed to be finite-dimensional.
In other words, there exists a finite set of orthonormal
{ψi}Li=1 ⊂ H such thatH = Span{ψi}Li=1.
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Assumption 1 simplifies discussion, since for any f ∈ H
there exists (unique) a ∈ RL with f =

∑L
i=1 aiψi =: Ψa,

where Ψ : RL → H is the linear operator defined by the
previous equation. In such a case, the concept of f being
sparse lies on a firm basis; it translates to a being sparse. Due
to space limitations, either the case where dim(H) = ∞ or
{ψi}Li=1 are unknown is not examined here. However, it is
worthy to note here that the abundance of training data may
be beneficial in such cases; (hn)n∈N define a sequence of lin-
ear subspaces (Hn := Span{hi}ni=0)n∈N of non-decreasing
dimension. Each Hn possesses an orthonormal basis, which
can be identified by online or sequential variations of the clas-
sical Gram-Schmidt process, e.g., [12], by which sparsity on
some fn ∈ Hn is translated to sparsity on its finite dimen-
sional rendition an ∈ Rdim(Hn).

By the orthonormality of {ψi}Li=1, 〈Ψa1,Ψa2〉 = a>1 a2,
∀a1,a2 ∈ RL. In other words, Ψ is an isometry, so that
discussion on (1) can be done in RL without any loss of gen-
erality. Moreover, symbols f and a will be used interchange-
ably to denote the same object. Since hn = Ψun, for some
un ∈ RL, then 〈f∗, hn〉 = a>∗ un.

Following a previous ST-based rationale [13], to model
inaccuracies and unknown noise statistics, a hyperslab is de-
fined around each datum (yn,un) for some user-defined εn ≥
0:

Sn[εn] :=
{
a ∈ RL :

∣∣u>na− yn∣∣ ≤ εn}, ∀n. (2)

3. FRAGMENTS OF FIXED POINT THEORY

The following discussion holds true also in Hilbert spaces
H with dim(H) = ∞. A concept of fundamental impor-
tance, associated with every mapping T , is its fixed point set
Fix(T ) :=

{
f ∈ H : T (f) = f

}
[10, Chap. 4]. To leave no

place for ambiguity, Fix(T ) is assumed nonempty.

Definition 1 (Partially quasi-nonexpansive mappings). A
mapping T is called partially quasi-nonexpansive, if

∀f ∈ H,∃Yf ⊂ Fix(T ) : ∀g ∈ Yf ,
‖T (f)− g‖ ≤ ‖f − g‖. (3)

Fix(T ) is not necessarily convex. An example is the fixed
point set of the partially quasi-nonexpansive mapping of Sec-
tion 5, which is a union of linear subspaces.

If we set Yf := Fix(T ), ∀f , in (3), then the mapping T
is called quasi-nonexpansive, with closed and convex Fix(T )
[10]. Clearly, any quasi-nonexpansive mapping is a partially
quasi-nonexpansive one. This is a strict inclusion due to the
existence of the mapping in Section 5.

T is called nonexpansive if ∀f1, f2 ∈ H, ‖T (f1) −
T (f2)‖ ≤ ‖f1 − f2‖. In such a case, Fix(T ) is closed and
convex [10]. It is easy to see that any nonexpansive mapping
is a quasi-nonexpansive one. Well-known examples of non-
expansive mappings, with principle role in applications, are
as follows.

Example 2 (Metric projection mapping). Given a nonempty
closed convex set C ⊂ H, the metric projection mapping
PC onto C is defined as the operator which assigns to an
f ∈ H the unique PC(f) ∈ C such that ‖f − PC(f)‖ =
ming∈C‖f − g‖. It is well-known that PC is a nonexpansive
mapping, with Fix(PC) = C. For example, Sn[εn] in (2) is a
closed convex set, with PSn[εn] available analytically [13]. It
is also known that nonexpansiveness is inherited by compo-
sitions and convex combinations of finite number of projec-
tion mappings onto intersecting closed convex sets [10, Sec-
tion 4.4].

Example 3 (Proximal mapping). Given a function ϕ : H →
R∪{∞}, and λ > 0, define the set-valued proximal mapping
Proxλϕ : H⇒ H as [14, Def. 1.22]

Proxλϕ(f) := arg inf
g∈H

1

2λ
‖f − g‖2 + ϕ(g), ∀f ∈ H.

If ϕ is (lower semicontinuous) convex, then Proxλϕ becomes
single-valued, with eminent applicability to signal processing
tasks [10,15]. Moreover, in such a case, Proxλϕ is nonexpan-
sive, with Fix(Proxλϕ) = arg minϕ(H), ∀λ > 0, provided
that arg minϕ(H) 6= ∅ [10, Prop. 12.28]. If ϕ := ιC , where
ιC attains the value of 0 on the closed convex set C, and +∞
elsewhere, then ProxλιC = PC , ∀λ > 0.

4. PENALIZED LEAST-SQUARES

Going back to (1), choose N ∈ N∗, and define Un :=
[un, . . . ,un−N+1] ∈ RL×N , yn := [yn, . . . , yn−N+1]> ∈
RN , and vn := [vn, . . . , vn−N+1]> ∈ RN . Then, (1) takes
the form of yn = U>n a∗ + vn, ∀n ∈ N. The mainstream of
batch sparsity-promoting algorithms utilize all the gathered
N training data to find an exact or approximate solution,
in most cases iteratively, to the following penalized least-
squares minimization task,

min
a∈RL

1

2
‖yn −U>n a‖2 + λ

L∑
i=1

p(|ai|), (4)

where p : R → [0,∞) stands for a sparsity-promoting, non-
decreasing, and non-convex, in general, penalty function, λ ∈
(0,∞) is the regularization parameter, and ai stands for the
i-th coordinate of the vector a.

Choices for p are numerous; if, for example, p(|a|) :=
χR\{0}(|a|), ∀a ∈ R, where χA stands for the characteris-
tic function with respect to A ⊂ R, then the regularization
term

∑L
i=1 p(|ai|) becomes the `0-norm of a. In the case

where p(|a|) := |a|, ∀a ∈ R, then the regularization term is
the `1-norm ‖a‖1 :=

∑L
i=1 |ai|, and (4) is the LASSO [16].

However, it has been observed that if some of the LASSO’s
regularity conditions are violated, then LASSO is sub-optimal
for model selection [5, 9, 17]. Such a behavior has motivated
the search for non-convex penalty functions p, which bridge
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the gap between the `0- and `1-norm; for example, the `γ-
penalty, for γ ∈ (0, 1), [8], the log- [8], the SCAD [8], the
MC+ [5], and the transformed `1-penalties [8].

Recently, sparsity-promoting coordinate-wise optimiza-
tion techniques for solving (4) are attracting a lot of interest
[5, 18]. As a justification, assume, for example, that N = L,
and that Un is orthogonal. By ãn := Unyn, (4) is equivalent
to the following separable-in-components task [3, 8]; find

M(ã) := arg min
a∈RL

( L∑
i=1

1

2λ
(ãi − ai)2 + p(|ai|)

)
. (5)

The connection of (5) with the proximal mapping of Ex-
ample 3 is evident; in short, M(ã) = ×L

i=1
Proxλϕ(ãi),

where×stands for the cartesian product, and ϕ := p ◦ | · |.
Under regularity conditions on p, M(ã) of (5) becomes a sin-
gleton [8]. On the other hand, the generalized thresholding
mapping in Section 5 does not impose any assumptions on
the regularity of p, and thus discussion in Section 5 does not
confine M(ã) to a singleton.

Figs. 1(b-d), show the PLSTOs associated with some of
the most commonly employed penalty functions. For exam-
ple, if p(|a|) :=

[
λ2 − (|a| − λ)2χ[0,λ)(|a|)

]
/λ, ∀a ∈ R,

then the resulting PLSTO is the celebrated HT [8], which is
depicted in Fig. 1a together with ST, which results in the case
where p(|a|) := |a|. The rest of the thresholding rules in
Fig. 1b correspond to MC+ [5,9] and SCAD [8], respectively.
HT is far from being the only discontinuous PLSTO. An ex-
ample is shown in Fig. 1c, by bridge thresholding (BT) [6],
which relates to the `γ-penalty, γ < 1. Continuous thresh-
olding functions, with nonlinear parts, are shown in Fig. 1(d).
More specifically, the non-negative garrote [7] and represen-
tatives of the n-degree garrote thresholding are illustrated.

5. GENERALIZED THRESHOLDING MAPPING

Definition 2 (The mapping T (K)
GT ). Fix a positive integerK <

L and define T (K)
GT : H → H as follows. For any f = Ψa, the

output T (K)
GT (f) = Ψb is obtained according to the following

steps:
(1) Identify, first, the K largest in absolute value components
of a, with J (K)

f being the length K ordered tuple which con-
tains their indices. If there are multiple components of a with
the same absolute value, choose the one with the smallest in-
dex. Then, ∀i ∈M

J
(K)
f

, set bi := ai.

(2) For the rest of the components i /∈ J
(K)
f , set bi :=

Shr(ai), where the function Shr : R→ R satisfies the follow-
ing conditions: (i) τ Shr(τ) ≥ 0, (ii) |Shr(τ)| ≤ |τ |, and (iii)
given any sufficiently small ε > 0, there exists a δ > 0, and an
intervalD ⊂ R such that ∀τ ∈ D\(−ε, ε), |Shr(τ)| ≤ |τ |−δ.
In other words, (δ,D) could be user-defined parameters to
guarantee that Shr acts as a strict shrinkage operator on

D \ (−ε, ε). The ε parameter is introduced to exclude 0 from
the picture, since, usually, Shr(0) = 0 (see Fig. 1).

Theorem 1. (1) T (K)
GT is partially quasi-nonexpansive; more

specifically, ∀f ∈ H, ∀g ∈M
J

(K)
f

, ‖f − T (K)
GT (f)‖2 ≤ ‖f −

g‖2 −‖T (K)
GT (f)− g‖2, where M

J
(K)
f

:= {Ψa : ai = 0,∀i /∈

J
(K)
f }.

(2) Fix(T
(K)
GT ) =

⋃
J∈T (K,L)MJ , where T (K,L) stands

for all the ordered tuples of length K out of {1, 2, . . . , L},
and MJ := {Ψa : ai = 0,∀i /∈ J}. Notice that Fix(T

(K)
GT ),

as a union of linear subspaces ofH, is a non-convex set.
(3) Let a sequence (fn)n∈N ⊂ H and an f∗ ∈ H. If
limn→∞ fn = f∗, and limn→∞

(
I − T

(K)
GT

)
(fn) = 0, then

f∗ ∈ Fix(T
(K)
GT ). This property can be rephrased as I −T (K)

GT
being demiclosed at 0.

The proof of the previous theorem is omitted due to space
limitations. An illustration of GT with a generic Shr can
be found in Fig. 1a. Examples where Shr is chosen from
the existing rich library of thresholding rules can be found in
Fig. 1e.

6. ALGORITHM

Algorithm 1 (The adaptive projection-based generalized
thresholding (APGT) algorithm). For an arbitrary initial
point, a0 ∈ RL, execute the following for every n ∈ N:
(1) Define the sliding window Jn := max{0, n− q + 1}, n
on the time axis, of size at most q, where j1, j2 for two in-
tegers j1 ≤ j2 stands for {j1, j1 + 1, . . . , j2}. The set Jn
defines all the indices corresponding to the hyperslabs, which
are to be processed at the time instant n. Among these, iden-
tify the “active” hyperslabs In :=

{
i ∈ Jn : PSi[εi](an) 6=

an
}

. Moreover, for every i ∈ In, define the weight ω(n)
i > 0,

with
∑
i∈In ω

(n)
i = 1, to weigh the importance of the infor-

mation carried by each hyperslab Si[εi].
(2) Choose an ε′ ∈ (0, 1], and let the user-defined µn take
values within [ε′Mn, (2− ε′)Mn], where

Mn :=


∑
i∈In ω

(n)
i ‖PSi[εi](an)−an‖

2

‖
∑
i∈In ω

(n)
i PSi[εi](an)−an‖

2
,

if
∑
i∈In ω

(n)
i PSi[εi](an) 6= an,

1, otherwise.

(6a)

Notice that due to convexity of ‖·‖2,Mn ≥ 1. In general, the
larger the µn, the larger the convergence speed of APGT.
(3) Finally, compute the next estimate by

an+1 :=


T

(K)
GT

(
an + µn

( ∑
i∈In

ω
(n)
i PSi[εi](an)− an

))
,

if In 6= ∅,
T

(K)
GT (an), if In = ∅.

(6b)

3
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Fig. 1. Illustration of PLSTOs for various choices of the regularizing function p in (5), and some examples of GT.

Due to space limitations, the theoretical properties of
APGT are deferred to a future work.

7. NUMERICAL EXAMPLES

To assess the APGT performance, the HT, SCAD, and the `γ-
penalty (γ < 1) based thresholding rule, called here BT, are
incorporated in GT, that is, HT, SCAD, and BT are used in
the place of Shr. In the following experiments, H := RL,
with L = 1024. For Figs. 2a and 2b, Ψ := IL, and a∗ is
100-sparse. The sensing vectors {un}n∈N∗ have indepen-
dent components drawn from N (0, 1), and the observations
are corrupted by additive white Gaussian noise of variance
σ2 = 0.1. Regarding APGT, µn := Mn, and εn := 1.3σ,
∀n. In this paper, convergence speed is of primal concern. To
this end, q := 390 since this appeared to be the lowest q value
leading to enhanced convergence speed for the specific L and
K values. It should be stressed, however, that APGT is not
sensitive to q. An extensive and complementary experimental
study of the APGT performance, for small values of q can be
found in [19].

The modifier “time-invariant” in Fig. 2a implies that λ re-
mains fixed ∀n. In all cases, K := K∗ := 100. The pa-
rameter λ was optimized leading to the values shown in the
figure legend. Moreover, APGT-SCAD, without being con-
siderably sensitive to parameter α, appeared to perform best
when α = 12. For comparison, the improved proportionate
adaptive projection algorithm (IPAPA) [20] is employed. The
projection order q of IPAPA is the parameter which dictates
its performance. The step parameter of the IPAPA is denoted
by µ. The best IPAPA performance, i.e., the one depicted with
a dashed curve with diamonds, is achieved with q = 200 and
µ = 1.8. For lower q values, such a large µ led to unstable
performance.

In Fig. 2a, the shape of the thresholding function was de-
termined in advance using fixed values for the parameters λ,
γ, α, etc. This is quite limiting, since APGT has the poten-
tial to incorporate time-varying thresholding rules. For this
reason, λ changes with time n in Fig. 2b. Assuming that an
estimate K of the true sparsity level K∗ is available at each
n, λn is properly tuned to guarantee that after thresholding,

a fixed number of components will become zero. Details on
how these strategies are determined are deferred to a future
work. Moreover, regarding BT, apart from the K larger in
magnitude components which remain unaltered, the next, say
P , smaller in magnitude components could be shrunk accord-
ing to BT. The performance of APGT, using the time-adaptive
thresholding strategies, hereafter abbreviated as APGT-AT, is
shown in Fig. 2b. For reference, the dotted curve marked
with open circles is the one from Fig. 2a, corresponding to
the best APGT performance with fixed λ. The linear com-
plexity APWL1 of [13] is also employed. For completeness,
the online cyclic coordinate descent - time weighted Lasso
(OCCD-TWL) [18], an RLS-type algorithm approximating
the LASSO solution, is also depicted. It can be seen that
APGT (q = 390) demonstrates a performance competitive
to the O(L2)-complexity driven OCCD-TWL.

Fig. 2c shows the ability of the tested algorithms to track
an abrupt change of the unknown vector a∗, which is realized
here after 1500 observations. In Fig. 2c, Ψ is a wavelet basis.
Prior to time 1500, the signal under consideration is of length
L = 1024, with K∗ = 100. However, at the 1500 time in-
stant, ten randomly selected wavelet coefficients change their
values from 0 to a randomly selected nonzero one. Since
the sparsity level of the signal changes (from 100 to 110, at
most) and it is not possible to know K∗ exactly in advance,
taking into account also that the proposed methods are ro-
bust to K∗ over-estimations, K is set to 150 throughout the
whole experiment. Moreover, q = 390. In OCCD-TWL, an
RLS-like forgetting factor lower than 1 is adopted to succeed
in re-estimating the unknown signal after the abrupt change.
More specifically, the value of 0.996 offers a good trade-off
between convergence speed and steady-state error floor.

Regarding the computational complexities of the APGT-
based methods, these are as follows: (1) APGT-AT-HT: (i)
Multiplications: (qe1 + e2 + 1)L + (K + e1 + 1)q, (ii) Di-
visions: e2 + 1, (iii) Sortings: O(L), (2) APGT-AT-`0.5: (i)
Multiplications: (qe1+e2+1)L+(K+P+e1+1)q+12P+1,
(ii) Divisions: P + e2 + 2, (iii) Sortings: O(L), (iv) Powers:
3P + 1, (3) APGT-AT-SCAD: (i) Multiplications (qe1 + e2 +
1)L+(L+e1+1)q+(L−K), (ii) Divisions: L−K+e2+1,
and (iv) Sortings: O(L), where e1 is either 1 or 2, depending

4
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(a) Time-invariant thresholding.

(b) Time-adaptive thresholding.

(c) Robustness against time variations of the un-
known system.

Fig. 2. (a) APGT with time-invariant thresholding rules.
(b) APGT with time-adaptive thresholding rules. (c) The
unknown vector has a sparse wavelet representation which
changes abruptly after 1500 observations.

on whether all ω(n)
i of the APGT attain the same value or not

(here e1 = 1), and e2 is either 1, if the `2 norm of the in-
put vectors (un)n∈N is not fixed, or 0, if it is normalized to
unity. Notice that IPAPA is a O(q3) + (q2 + 3q + 1)L + q
multiplication-based strategy, while OCCD-TWL is O(L2)-
complexity driven. Moreover, the complexity of APWL1 is
(i) (qe1 + e2 + 1)L+ (L+ e1 + 1)q+ 3L multiplications, (ii)
2L+ e2 + 1 divisions, and (iv) O(L) sortings.
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