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ABSTRACT

The sample linear minimum mean square error (LMMSE) es-
timator undergoes high performance degradation in the small
sample size regime. Herein a double shrinkage correction is
proposed to alleviate this problem. First, an af�ne transfor-
mation of the sample covariance matrix (SCM) is considered
within the LMMSE. Second, a linear transformation of that
modi�ed �lter is proposed. The linear transformation mini-
mizes the asymptotic MSE of the �lter given a shrinkage of
the SCM. And the shrinkage of the SCM optimizes the as-
ymptotic MSE of the data covariance. Simulations highlight
that the proposed estimator outperforms robust methods to the
small sample size, namely LMMSE based on diagonal load-
ing (DL) or Ledoit-Wolf (LW) regularizations of the SCM.

Index Terms� LMMSE, shrinkage, small sample size,
random matrix theory.

1. INTRODUCTION

The problem of linear estimation of a parameter, observed
through a linear model, appears in many signal processing ap-
plications, e.g. signal waveform estimation in array process-
ing [1]. Among the linear estimators LMMSE is the optimal
method, in anMSE sense, see [2]. In practice, though, it is not
realizable as it depends on the unknown covariance of the ob-
servations. In order to face this adversity the conventional ap-
proach is as follows. The unknown covariance in the LMMSE
is estimated using the SCM. This yields the so called sample
LMMSE method. The rationale for this approach is that the
SCM is the maximum likelihood (ML) estimator for Gaussian
data, see [3, Theorem 4.1]. Indeed, it is the minimum vari-
ance unbiased estimator (MVUE) in the large sample size
regime, i.e. when the number of samples N is large com-
pared to the observation dimensionM . Nonetheless, in prac-
tical situations N may be comparable toM , which yields an
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framework of the FP7 Network of Excellence in Wireless Communications
NEWCOM# (Grant agreement no.318306) and by the European Coopera-
tion in Science and Technology under project COST Action IC0902.

ill conditioned SCM and leads to severe performance degra-
dation of the sample LMMSE. Several methods have been
proposed to tackle this problem. Namely, DL techniques reg-
ularize the SCM by adding a constant to its diagonal, see
[4], though the choice of the constant is rather controversial.
In [5], Ledoit and Wolf proposed a general shrinkage of the
SCM, i.e. an af�ne transformation that not only regularizes
the SCM but also optimizes the asymptotic MSE of the data
covariance. Both DL and LW aim to regularize and improve
the SCM estimate but they do not directly deal with the esti-
mation of the parameter of interest, which is the �nal target
herein. This case was tackled in [6], where a shrinkage of the
sample LMMSE method that minimizes the asymptotic MSE
of the signal of interest, provided that N > M , was proposed
based on random matrix theory (RMT) tools.

Herein, the bene�ts of those two approaches are consid-
ered. As in [6] a linear transformation of the LMMSE �lter is
considered, as according to the shrinkage theory by adding a
bias to the �lter the variance in the estimation of the parameter
may diminish and the overall MSE may decrease. However,
[6] is improved and extended to deal withM > N . Namely,
unlike [6] which uses the SCM to implement the LMMSE �l-
ter, herein a shrinkage of the SCM is considered. This is a bet-
ter estimate than the SCM and is well conditioned in any sam-
ple size regime. The scalar controlling the shrinkage of the �l-
ter is designed as the one minimizing the asympotic MSE of
the �lter, given a shrinkage of the SCM. Whereas the scalars
governing the shrinkage of the SCM are the ones proposed by
LW, i.e. the ones minimizing the asymptotic MSE of the data
covariance. The simulations show that the proposed approach
not only outperforms dramatically the sample LMMSE, but
also the shrinkage LMMSE in [6] and the implementations of
the LMMSE when considering DL or LW estimations of the
covariance.

The paper is organized as follows. Section 2 deals with
the signal model and the relation with prior work. Section
3 derives the proposed double shrinkage LMMSE method.
Next, section 4 presents numerical simulations comparing the
proposed estimator with the alternatives reviewed above. Fi-
nally, section 5 concludes the paper.
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2. PRELIMINARIES

2.1. Signal model

Let x(n)2 C be a parameter to be estimated and let it be ob-
served through the stochastic process y(n)2 CM by means
of the next linear model,

y(n) =x(n)s+ n(n); 1 � n � N (1)

being s 2 CM a known deterministic vector, n(n)2 CM a
stochastic process and N the number of available measures,
e.g. in the context of array processing y(n) is the output of an
antenna array, s is the steering vector and n(n) contains the
noise plus interference signals [1]. Moreover, the next model
assumptions are supposed to hold:

(a) x(n) and n(n) are uncorrelated. Moreover, E [n(n)] =
0 and E

�
n(n)n(n)H

�
= Rn.

(b) As a consequence of (a) R , E
�
y(n)y(n)H

�
=

ssH +Rn;  , E
h
jx(n)j2

i
is known and ksk2 = 1.

(c) The set of observations fy(n)gNn=1 are iid.

2.2. LMMSE in the small sample size regime

Consider an estimate of x(n) based on a linear �ltering of
y(n), i.e. x̂(n) = wHy(n). Then, taking into account the
data model in (1) the MSE for a given �lter w reads,

MSE (w) = wHRw+(1�wHs� sHw) (2)

The optimization of this expression with respect to w
leads to the well known LMMSE estimator [2],

x̂l(n) = w
H
l y(n); wl=R

�1s (3)

Nonetheless, this estimator is not realizable as it depends
on the unknown noise plus interference covariance Rn, see
(1). In order to circumvent this problem the common ap-
proach is the so called sample LMMSE, which relies on re-

placingR by its sample estimate R̂ , 1
N

N�1X
n=0

y(n)yH(n) in

(3),
x̂t(n) = w

H
t y(n); wt=R̂

�1s (4)

The rationale behind this method relies on the optimality
properties of R̂. Speci�cally, it is the ML estimator of R
for Gaussian data [3, Theorem 4.1] and the MVUE for N �
M . Nonetheless, in the small sample size regime the SCM is
an ill conditioned estimator [5], i.e. inverting R̂ when N �
M severely ampli�es the estimation error, indeed for N 6
M may not be even invertible. Thereby in the small sample
size regime the SCM yields large performance degradation of
the sample LMMSE. In order to face this problem DL is a
popular technique, see [4, Chapter 4] and references therein.

It is based on regularizing the SCM by adding a constant to
its diagonal, yielding the so called DL-LMMSE herein,

x̂dl(n) = w
H
dly(n); wdl=(R̂+�I)

�1
s (5)

The correct choice of � is rather controversial, a possibil-
ity is to �x � equal to the standard deviation of the diagonal
entries of R̂, see [7]. This is the value considered below for
simulation purposes. More general is the approach of Ledoit
and Wolf (LW), see [5]. They propose a shrinkage of the
SCM that not only regularizes and improves the SCM, but
also minimizes the asymptotic MSE of the data covariance,
i.e. �Rlw=�

lw
1 R̂+�

lw
2 I. Plugging �Rlw into (3) yields the so

called LW-LMMSE herein,

x̂lw(n) = w
H
lwy(n); wlw=(�

lw
1 R̂+�

lw
2 I)

�1
s (6)

For the complex case, �lw1 and �lw2 may be implemented
as follows, see [8],

�lw1 = 1� � ; �lw2 = � Tr(R̂s)
2M

(7)

� =

NP
i=1

ys(i)yTs (i)�R̂s

2
F

N2
h
Tr(R̂2

s)�
Tr2(R̂s)
2M

i (8)

where R̂s =
1
N

NP
i=1

ys(i)y
T
s (i), k�kF denotes the Frobenius

norm, ys(i) = [Re(y(i)); Im(y(i))]T and Tr[�] denotes the
trace operator. LMMSE implementation based on either DL
or LW aims to improve the estimate of R, but do not di-
rectly deal with the estimation of x(n), which is the �nal
target. This was the point of view in [6]. Speci�cally, the
authors proposed the next shrinkage of the sample LMMSE
that minimizes the asymptotic MSE of x̂(n), provided that
N > M , and that gives much better performance than the
sample LMMSE,

x̂s(n) = w
H
s y(n); ws=(1� cf )2R̂�1s (9)

where cf = M=N . In this paper the bene�ts of both
strategies are adopted by proposing a double shrinkage struc-
ture of the �lter. Namely, recall that shrinkage theory relies
on introducing a bias in the estimation of a parameter such
that its estimation variance decreases and thereby the overall
MSE diminishes. Thus, as in [6] a linear transformation of the
�lter is proposed as a correction controlling the minimization
of the MSE of the parameter of interest. Moreover, a shrink-
age of the SCM is proposed, which permits, unlike in [6], to
deal with M > N and to expect better performance, as the
shrinkage of the SCM is a better estimate of the data covari-
ance than the SCM. Moreover, we embrace DL-LMMSE or
LW-LMMSEmethods and improve them due to the additional
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shrinkage of the �lter as shown below. Thus, the proposed es-
timator has the next structure,

x̂ds(n) = w
H
dsy(n); wds=�(�1R̂+�2I)

�1s (10)

3. PROPOSED DOUBLE SHRINKAGE LMMSE

Next, the design of the shrinkage coef�cients �, �1 and �2
of the proposed �lter in (10) is dealt with. Namely, �rst the
optimal � is obtained, i.e. �1 and �2 are assumed known
and the MSE is optimized with respect to �. Thus, de�ning
�R = �1R̂+�2I , and after straightforward manipulations,
one �nds that the minimization of the MSE in (2) is obtained
for the next �,

�o = argmin
�

MSE (w) = 
sH �R�1s

sH �R�1R�R
�1
s

(11)

This highlights that the shrinkage of the �lter is not su-
per�uous, i.e. �o 6= 1 and thereby does not lead to the case
of just considering wds=(�1R̂+�2I)�1s. Nonetheless, this
leads to an unrealizable �lter. To circumvent this problem, an
(M;N)-consistent estimate of (11), denoted by �̂o will be ob-
tained by means of RMT and G-estimation tools, i.e. �̂o will
converge in probability towards �o when M;N ! 1 and
M=N ! c 2 (0;1); in compact notation �̂o � �o. Thereby
�̂o will minimize the asymptotic MSE. Note that this general
asymptotic regime naturally deals with small sample size sit-
uations. To achieve our aim, the procedure is as follows,

1. Find the asymptotic deterministic expressions of
sH �R�1s and sH �R�1R�R

�1
s, denoted by f(R;�1;�2)

and g(R;�1;�2), respectively.

2. Obtain (M;N)-consistent estimates of f(�) and g(�),
denoted by f̂(R̂;�1;�2) and ĝ(R̂;�1;�2):

3. Estimate sH �R�1s and sH �R�1R�R
�1
s using f̂ (�) and

ĝ(�), respectively, i.e. �̂o = 
f̂(R̂;�1;�2)

ĝ(R̂;�1;�2)
� �o.

For the sake of clarity of presentation, the convergence of
the numerator and denominator in (11) is given in the appen-
dix. It is based on the results in [9, appendix I] and substituted
in (11) and after some manipulations yields that �o converges
in probability to the next expression,

�o � �1
1� c�
1 + cb

sH(R+�I)
�1
s

sH(R+�I)
�1
R(R+�I)

�1
s

(12)

where � = 1
M

MP
i=1

�2i
(�i+�)2

, �i are the eigenvalues of R,

� = �(1+ cb), � , �2=�1 and b is the positive solution to the

next equation b = 1
M

MP
i=1

�i(1+cb)
�i+�(1+cb)

. Therefore, in order to

obtain an (M;N)-consistent estimate of �o, one must obtain
consistent estimates of b, �, �d = sH(R+�I)

�1
s and �n =

sH(R+�I)
�1
R(R+�I)

�1
s. These are provided in [10, Ap-

pendix A], and summarized below in the appendix. Now, in
order to obtain the (M;N)-consistent estimate of the optimal
shrinkage factor �o, one needs to substitute the estimates of
b, �, �n and �d into (12). After this step, one needs some ma-
nipulations based on the matrix inversion lemma and the next
identity [4, p. 248],

1

M
Tr[R2(R+�I)�2] = 1� 2

M
Tr[(��1R+ I)�1] +

1

M
Tr[(��1R+ I)�2]

Finally, this process leads to obtain the desired (M;N)-
consistent estimate of �o,

�̂o = �1(1�
c

M
Tr[R̂(R̂+�I)�1])2

� sH(R̂+�I)
�1
s

sH(R̂+�I)
�1
R̂(R̂+�I)

�1
s

(13)

At this point, the design of �1 and �2 must be tackled.
The optimal approach would be to substitute (11) in (10) and
minimize the MSE in (2) with respect to �1 and �2. Nonethe-
less, �1,�2 could not be isolated due to their presence within
the inverse. To circumvent that and to obtain a realizable
�lter, one could proceed as in [9], �nd the (M;N)-consistent
estimate for the asymptotic MSE(� = �o;�1; �2) and �nd the
�1; �2 minimizing it. Though a realizable �lter is obtained,
one still must carry out an extensive search to �nd �1 and �2.
Instead of this approach, herein we propose to substitute �1
and �2 by the estimates proposed by Ledoit and Wolf in [5],
i.e. �lw1 and �lw2 in (7). In this way, the numerical search is
avoided. Moreover this �ts perfectly in our framework as �lw1
and �lw2 are (M;N)-consistent estimates of the �1 and �2 that
optimize the MSE of the covariance, when using the shrink-
age estimator �R = �1R̂+�2I, �2 = (1 � �1) Tr(R̂s)=2M ,
and R̂s de�ned above in (8). Next section compares this
approach to the lower MSE bound when considering the op-
timal �o in (11) and �1, �2 obtained by a 2D search in (2).
Recalling that �R = �1R̂+�2I and that � = �2=�1, we can
manipulate (13) to obtain the �nal expression of the proposed
algorithm, which is summarized next.

Proposed estimator
The proposed estimator for the parameter x(n), given the

data model (1) is given by the next expression,

x̂ds(n) = w
H
dsy(n);wds=�̂o �R

�1s

3
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�̂o = (1�
c�lw1
M

Tr[R̂�R
�1
])2

sH �R�1s

sH �R�1R̂�R
�1
s

(14)

�R =�lw1 R̂+�
lw
2 I

and the expression of �lw1 , �
lw
2 is given by (7).

Remark: The proposed estimator does not rely on any as-
sumption regarding the distribution of the observed data y(n)
in (1).

4. NUMERICAL SIMULATIONS

This section conducts an MSE comparison, between the
proposed double shrinkage LMMSE in (14), the shrinkage
LMMSE in (9), the sample LMMSE in (4), the DL-LMMSE
in (5), the LW-LMMSE in (6) and the lower bound i.e. the
LMMSE in (3). The lower MSE bound for the type of double
shrinkage �lters considered herein, i.e. (10), is also plotted,
considering the optimal �o in (11) and �1, �2 obtained by
a 2D search assessing (2) in the grid �1, �2 2 (0; 1). An
array signal processing application is considered. Namely,
y(n) � CN (0;R) in (1), where R = ssH +Rn. Without
loss of generality  = 1. A uniform linear array is assumed
to specify the steering vector s, i.e. [s]m = ej� sin �0mp

M
, where

�0 is the Direction of Arrival (DOA) of the signal of interest,
see [1]. For the simulation purposes �0 = 0�. Rn is mod-
elled asRn = SPS

H+�2I [1]. Where, [S]m;k =
ej� sin �kmp

M
,

m = 0; : : : ;M�1 is the antenna index, k = 1; : : : ;K de�nes
a set of interferers and �k is the DOA of the k-th interferer. P
is the covariance matrix of the interferers and �2 is the power
of an AWGN. For the simulations 4 interferers are considered,
whose DOAs are f�kg4k=1 = f45�;�45�; 85�;�85�g. P is
considered to be diagonal and the elements of the diagonal
are set to 1. Regarding �2, it is set to �2 = 10�SNR=10,
where SNR = 5 dB is the signal to noise ratio. Finally,
M = 16 and N is speci�ed below.
In �gure 1, the proposed double shrinkage LMMSE (14)

is compared to the theoretical LMMSE (3), its sample imple-
mentation (4) and the shrinkage LMMSE (9) proposed in [6].
N 2 [16; 300], because the two latter methods can not deal
with M > N . The proposed method dramatically outper-
forms the sample LMMSE in the small sample size regime
i.e. cf ! 1. Indeed it improves the shrinkage LMMSE (9),
since it relies on the shrinkage of the SCM, which is a bet-
ter estimate of R than the SCM, the one used by (9). In the
large sample size regime all the methods converge, as in this
situation the SCM becomes a good estimate ofR.
In �gure 2, the proposed shrinkage estimator (14) is com-

pared to the DL-LMMSE (5) and the LW-LMMSE (6), i.e. to

Fig. 1: Performance comparison between proposed double shrinkage
LMMSE (14), theoretical LMMSE estimator (3), sample LMMSE (4) and
shrinkage LMMSE (9).

the other methods that are robust to the small sample size and
that support M > N , thus in this �gure N 2 [4; 300]. The
estimator proposed in this paper clearly outperforms the other
alternative methods. This is due to the additional shrinkage of
the �lter governed by �̂o (14) and a design based on facing the
minimization of the MSE of the estimate of x(n). Moreover,
LW-LMMSE outperforms DL-LMMSE as its regularization
of R̂ is asymptotically optimal.

Fig. 2: Performance comparison between proposed double shrinkage
LMMSE (14), theoretical LMMSE estimator (3), LW-LMMSE (6) and DL-
LMMSE (5).

5. CONCLUSIONS

This paper has dealt with the degradation of the sample
LMMSE when M > N or N � M . The LMMSE is im-
plemented by using a shrinkage of the SCM and a linear
scaling of the LMMSE is considered. Given the shrinkage of
the SCM, the linear scaling minimizes the asymptotic MSE
of the parameter of interest. And then the shrinkage of the
SCM is selected to optimize the asymptotic MSE of the data

4
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covariance. Simulations highlight that the proposed estimator
clearly outperforms alternative methods based on regularizing
the SCM or shrinking the LMMSE �lter.

A. APPENDIX

A.1 Convergence of the numerator and denominator in
(11)

Let de�ne � = �2=�1, then one can express the numer-
ator and the denominator in (11) as ��11 sH(R̂+�I)

�1
s and

��21 sH(R̂+�I)
�1
R(R̂+�I)

�1
s, respectively. The conver-

gence of these expressions was obtained in [9, appendix I]
in terms of the eigenvectors, ei, and eigenvalues, �i, ofR.

��11 sH(R̂+�I)
�1
s � ��11

MP
i=1

(1+cb)jsHeij2
�i+�

��21 sH(R̂+�I)
�1
R(R̂+�I)

�1
s � ��21 ((1 + cb)2 + cb0)

�
MP
i=1

jsHeij2�i
(�i+�)2

where � , �(1 + cb), b , b(z) pz=0 is the positive so-
lution to the next transcendental equation, b0 =db(z)

dz pz=0 is
de�ned next and b(z) is de�ned in [9, eq. 25],

b = 1
M

MP
i=1

�i(1+cb)
�i+�

b0 = (1� 1
M

MP
i=1

c�2i
(�i+�)2

)�1 1
M

MP
i=1

�2i (1+cb)
2

(�i+�)2

Finally, bearing in ming the next equalities,

MX
i=1

��sHei��2
�i + �

= sH(R+�I)
�1
s

MX
i=1

��sHei��2 �i
(�i + �)2

= sH(R+�I)
�1
R(R+�I)

�1
s

one obtains that the numerator and denominator in (11) con-
vergence in probability to the next expressions,

sH(R̂+�I)
�1
s � (1 + cb)sH(R+�I)�1s

sH(R̂+�I)
�1
R(R̂+�I)

�1
s � ((1 + cb)2 + cb0)

�sH(R+�I)�1R(R+�I)�1s

A.2 (M,N)-consistent estimates of b, �, �n, �d in (12)
The consistent estimates of these parameters is given in

[10, App.A] and it is based on expressing b, �, �n and �d in
terms of the next real Stieljes transforms t(x) and s(x),

� = 1� s(x) px=��1+��1
ds(x)
dx px=��1

b=(1 + cb) = 1� s(��1(1 + cb)�1)
�d = �

�1t(�
�1
); �n= �[x

2
dt(x)=dx] px=��1

t(x) =
MX
k=1

��sHek��2
1 + x�k

; s(x) =
1

M

MX
k=1

1

1 + x�k
; x > 0

The (M,N)-consistent estimators of t(x) and s(x) were
obtained in [11], see [10, App.A]. Thereby, this paves the way
to obtain the next (M,N)-consistent estimates of b, �, �n and
�d, see [10, App.A] for further details,

b̂ =
1� �

M Tr[(R̂+�I)�1]

1�c(1� �
M Tr[(R̂+�I)�1])

�̂d = (1� c+ c �M Tr[(R̂+�I)�1])sH(R̂+�I)
�1
s

�̂ =
1
M Tr[R̂2(R̂+�I)�2]� c

M2 Tr
2[R̂(R̂+�I)�1]

1�c+c�2 1
M Tr[(R̂+�I)�2]

�̂n =
(1�c(1� �

M Tr[(R̂+�I)�1]))2

1�c+ c
M Tr[(��1R̂+I)�2]

sH(R̂+�I)
�1
R̂(R̂+�I)

�1
s
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