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ABSTRACT

This paper presents a method for an unsupervised discov-
ery of acoustic patterns in bird vocalisations recorded in real
world natural environments. The proposed method employs
sinusoidal detection to provide frequency tracks which are
used as features to characterise bird tonal vocalisations. A
variant of dynamic time warping, capable of searching for
multiple partial matchings, is used to segment the data based
on these frequency track sequences. Agglomerative hierar-
chical clustering approach is then employed to cluster recur-
ring segments. Evaluations are performed on audio record-
ings provided by the Borror Laboratory of Bioacoustics. The
obtained results indicate that structurally distinct stereotyped
acoustic units can be determined.

Index Terms— unsupervised, clustering, segmentation,
dynamic time warping, bird, vocalisation, sinusoid, tonal

1. INTRODUCTION

Bird vocalisations can be considered to be composed of sub-
units of different levels, such as elements (also referred to as
notes), syllables, phrases and songs. Elements can be taken
as the smallest structurally distinct stereotyped acoustic units
produced by birds, and these can be thought of similarly as
phonemes in the context of speech processing. While large
amount of phoneme (or higher) level of annotated data ex-
ists for speech, there are no wide range publically available
annotated data for bird vocalisations. Such annotated bird
acoustic data and the inventory of units of bird vocalisations
are important both for bioacousticians, for instance, to study
differences between individuals and populations or behaviour
contexts, and for development of more advanced automated
systems for processing of bird vocalisations.

Unsupervised processing of time series data and search-
ing for recurring patterns relates to current research in vari-
ous fields, from computational biology to audio summarisa-
tion. A recent review of time series matching approaches was
presented in [1]. We focus here on works in speech and au-
dio processing. An unsupervised derivation of variable-length
acoustic units from speech signal employing hidden Markov

models was investigated in [2]. The authors in [3] employed
dynamic time warping (DTW) and neural networks for an un-
supervised categorisation of isolated vocalisations of dolphins
and whales. The work in [4] employed a segmental variant of
DTW for unsupervised processing of speech data to automat-
ically extract words and linguistic phrases from recordings of
academic lectures. In [5], the segmental DTW and K-means
clustering was employed for unsupervised learning of acous-
tic events, with evaluations presented for spoken digits and
non-speech sounds in meeting rooms. In [6], a similarity ma-
trix approach was used to summarise music data.

Automatic processing of bird vocalisations is a relatively
recent research field [7, 8, 9]. The data used in many stud-
ies up to date consists of recordings of relatively isolated bird
vocalisations without noise. Some studies used continuous
recordings and split the signal into smaller segments either
by human intervention of spectrograms [9] or automatically
using an energy-based threshold decision in time or time-
frequency domain [7, 10, 11, 12]. Such energy-based seg-
mentation may be difficult to obtain accurately in recordings
of bird vocalisations in their natural habitat due to being usu-
ally contaminated by various background noise or vocalisa-
tions of other birds or animals.

In this paper, we propose an approach for unsupervised
discovery of acoustic elements in bird vocalisations. As we
are dealing specifically with bird tonal vocalisations, we em-
ployed an algorithm, which we introduced in [13, 14], to
decompose the entire acoustic scene into sinusoidal com-
ponents. This is then used for detection and estimation of
frequency tracks that are used in this paper as temporal se-
quences for further processing stages. Note that the further
stages of the processing are not dependent on the type of
features and thus the presented work could also be applied
to birds producing non-tonal vocalisations. We developed a
variant of DTW which can search for multiple partial match-
ings within given sequences. The resulted segments are then,
based on their DTW measured similarity, clustered using a
hierarchical clustering approach. Experimental evaluations
show that the proposed method can provide a set of struc-
turally distinct stereotyped bird vocalisation patterns.

EUSIPCO 2013 1569744753

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2. ESTIMATION OF FREQUENCY TRACKS

As we consider birds producing tonal vocalisations in this pa-
per, we can describe an audio signal in terms of sinusoidal
components. Based on the detected sinusoidal components,
we then characterise the signal in terms of the frequency of the
most prominent sinusoidal component detected at each frame-
time. This section gives a brief summary of the method we
employed for detection of sinusoidal components, which we
introduced in [13] and further improved in [14] and employed
for processing of speech [15] and bird signals in [8]. Note that
the presented method could be directly employed for dealing
with simultaneous bird vocalisations, this however is not the
aim of this paper. As such we simply consider that the bird of
interest produces the loudest sinusoidal component.

An example of a spectrogram of an audio field recording
from the Borror data [16] and the estimated frequency track
is depicted in Figure 1. It can be seen that the frequency track
corresponds well to the tonal vocalisation of the bird.
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Fig. 1. An example of a spectrogram (a) of audio field record-
ing and the corresponding estimated frequency track (b).

2.1. Method outline

We consider that the signal may consist of an unknown num-
ber of sinusoidal components. The method tackles the detec-
tion problem as a pattern recognition problem. Each spectral
peak is considered as a potential sinusoidal component. A
set of features, extracted from the short-time spectrum, is ob-
tained for each spectral peak. The decision whether the peak
is detected as a sinusoid or not is based on calculating the
probability of the extracted set of features on a model corre-
sponding to sinusoids and to noise.

2.2. Spectral magnitude and phase features

Let us denote by Sl(k) the short-time spectrum of the lth

frame of the signal. Denote by kp the frequency index of
a spectral peak found in the short-time magnitude spectrum.
For each peak, a multivariate feature vector y, capturing the
spectral magnitude shape and phase continuity information
around the peak, is extracted. The magnitude shape features
are obtained by using a normalised spectral magnitude values
over the range of frequency bins from kp−M to kp +M , i.e.,

y=(|S̃l(kp −M |, . . . , |S̃l(kp − 1)|, |S̃l(kp + 1)|, . . . |S̃l(kp +

M |), where |S̃l(k)| is the magnitude spectrum |Sl(k)| nor-
malised by the magnitude value at the peak |Sl(kp)| and M
denotes the number of bins around the peak to be used. The
phase continuity features are obtained by using the spectral
phase difference values over the range of frequency bins from
kp−M to kp+M , i.e., y=(∆φl(kp−M), . . . ,∆φl(kp+M)).
The phase difference between the current and previous signal
frame is defined as ∆φl(k) = φl(k)− φl−1(k)− 2πkpL/N ,
where φl(k) and φl−1(k) denote the phase of the frequency
point k at frame-time l and l − 1, respectively, and L is the
frame-shift in samples.

2.3. Probabilistic modelling

Various classification approaches could be employed for mak-
ing the decision about the peaks. In this paper, we employed
Gaussian mixture models (GMMs) which have been exten-
sively and successfully used in speech and audio pattern pro-
cessing. We are currently also investigating the use of dis-
criminative approaches, such as support vector machines.

The GMM models the distribution of the multivariate fea-
ture vector y, representing the spectral magnitude shape and
phase continuity. A large collection of features y correspond-
ing to spectral peaks of noise and of sinusoidal signals at var-
ious SNRs are used as the training data to estimate the param-
eters of the GMM of noise, denoted by λn, and of sinusoidal
signals, denoted by λs.

A given unknown audio signal is processed as described
in the previous section to extract the features for each spectral
peak. The decision whether a spectral peak at a given signal
frame corresponds to a sinusoidal signal or not is based on the
maximum likelihood criterion, i.e., the peak is detected as a
sinusoid if p(y|λs) > p(y|λn).

3. UNSUPERVISED SEGMENTATION

The application of the sinusoidal detection method described
in Section 2 results in a form of an initial segmentation of the
signal; for instance, signal-frames in which no sinusoid is de-
tected indicate no presence of tonal vocalisations. However,
these initial segments may contain several repetitions of vo-
calisation elements and/or other tonal sounds, which could be
anywhere within the detected segments. As such, the use of
the conventional DTW that searches for similarity of whole
sequences is not suitable. Instead, we need to search for par-
tial and multiple matchings within a given pair of segments.

3.1. Dynamic Time Warping

Conventional DTW algorithm can find the optimal global
alignment, or warping, path between two whole sequences,
while utilising some distance measure and constraints. The
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accumulated distance between the two sequences along that
path can be used as a basis for comparison of the sequences.

Consider two sequences representing a time series of vec-
tors, X = (x1, . . . ,xNX

) and Y = (y1, . . . ,yNY
), where

NX and NY is the length of each sequence, respectively. A
warping path, W = (w1, . . . , wK), defines a mapping be-
tween the sequence X and Y . The kth element of W is de-
fined as wk = (ik, jk), where ik and jk are frame-time in-
dices for X and Y sequence respectively. The globally op-
timal warping path W is such that minimises the cumulative
distance

DW (X,Y ) =

K∑
k=1

d(xik ,yjk) (1)

where d(xi,yj) represents a distance measure between the
vectors xi and yj , with the Euclidean distance being often
used and also employed in this paper.

A variety of constraints may be imposed on the warping
path W in order to avoid a warping of the time-axis which
is considered as undesirable in a given specific task. A com-
monly used relations between two consecutive points on the
warping path, which we also employed here, specifies that
w(k− 1) is one of the following (ik, jk − 1), (ik − 1, jk − 1)
or (ik − 1, jk), i.e., only a single frame-time move in hori-
zontal, diagonal or vertical direction is allowed, respectively.
We also employed a constraint on the possible relation among
several consecutive moves on the warping path, specifically,
we do not allow more than three consecutive moves in hor-
izontal or vertical direction. The constraints on w1 and wK

determine the possible starting and ending point.
Since the distance DW (X,Y ) as expressed in Eq. 1 is

accumulating over the warping path, the use of this distance
value directly would cause that the length of the sequence af-
fects the value. Thus, we normalise this distance by the length
of the warping path.

3.2. Partial and multiple matching using a modified DTW

This section presents modifications to the conventional DTW
algorithm that we employed in order to obtain multiple partial
alignment paths for two given sequences.

In order to search for partial paths, we consider that the
starting and ending points can be anywhere within the NX ×
NY matrix. This is implemented by calculating several DTW
searches in parallel, each considering a different starting point
on one of the sequence, let’s say X , and allowing the start
anywhere on the other sequence Y . For clarity, let us consider
only one such DTW search corresponding to a starting point
ir on the sequence X . As the DTW calculation progresses,
the cumulative distance values are obtained for subsequent
points in the matrix. The values of the normalised cumulative
distance can be examined at the frame-time ir +Lmin on the
sequenceX and any frame-time j on the sequence Y . Lmin is
the minimum length of a sequence we consider for matching

and this is employed to avoid short accidental match. If there
is no j such that the normalised cumulative distance is below a
given thresholdDthr, i.e.,D(ir+Lmin, j) ≥ Dthr for all j =
1, . . . , NY , then, we can consider that no minimum-length
partial match is found for the DTW search starting at the ir on
the sequence X and as such we can stop proceeding with this
DTW calculation further. On the other side, if the minimum-
length match is found, this DTW search will continue until the
normalised cumulative distance becomes greater than Dthr.

Based on the above procedure, we obtain a set of partial
paths matchings within the two sequencesX and Y . For each
of the found partial warp paths, we have an associated starting
and ending points and the normalised cumulative distance. If
there is more than one path falling within the rectangular area
defined by the starting and ending points of the given partial
warp path, we consider only the path with maximum length.

An example of the result obtained by the above proce-
dure on a pair of real-world bird recordings is given in Fig-
ure 2. The lines indicate all the partial matchings found. For
simplicity, the lines are drawn by connecting the starting and
ending points of the found match. It can be seen that the pro-
cedure found 13 partial matches between the given two se-
quences that allign well to each other.

Fig. 2. An example of the output of multiple partial matchings
found when comparing two bird recordings.

4. CLUSTERING OF SEGMENTS

The output of the partial DTW is a large collection of seg-
ments and their associated distances one to another. Here, we
use agglomerative hierarchical clustering method to identify
and group together all structurally similar segments that were
produced by a particular bird.

Agglomerative method is a bottom-up hierarchical method,
where clusters at one level are merged as clusters at the next
level. Initially each segment is assumed as a distinct cluster.
Based on the distances between the segments (as obtained by
DTW), the two closest ones are merged into a larger clus-
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Fig. 3. A part of the obtained hierarchical clustering tree of the segments found by the partial DTW segmentation.

ter. The pairwise similarity between the new cluster and the
remaining clusters is then calculated, by taking the average
distance of these two clusters to the remaining clusters, and
distance matrix is updated. This procedure of merging into
larger clusters and correspondingly updating the distance
matrix is repeated recursively until the termination criterion
is reached. The termination may be based on the distance
exceeding a pre-defined value.

5. EXPERIMENTAL EVALUATIONS

This section presents experimental evaluation of the entire
proposed system for learning bird vocalisation patterns. We
performed experiments using audio recordings from [16].
These recordings were collected over several decades, mostly
in the western United States. There are several files for each
bird specie, and each file is typically between one to ten min-
utes long. The recordings are encoded as mono 16-bit wav
files, with sampling rate of 48 kHz. They are field record-
ings in real world natural habitats of birds, and as such, there
is also present a various level of background environmental
noise, vocalisations of other birds/animals and human speech.
There is no labeling information indicating the times of bird
singing accompanied with the acoustic data.

We divided the signal into frames of 256 samples with
a shift of 64 samples between adjacent frames. The frame
length corresponds to approximately 5.3 ms. Similarly short
signal frames were found suitable for processing of bird
acoustic signals also in our previous research [8]. Hamming
analysis window is used and the DFT size is set to 512 points,
i.e., the signal is appended by 256 zeros in order to provide
a finer DFT sampled spectrum. In partial DTW search, the
value of Dthr and Lmin was set to 2 and 15, respectively.
The results presented below are for the bird specie ‘Carolina
Wren’. As no annotation of the data is available, evaluations
are performed by visually inspecting if the segments assigned
to the same cluster are similar to each other.

The partial DTW search provided 1500 variable-length
segments. The clustering of these segments resulted in a hi-

erarchical tree, part of which is depicted in Figure 3. The
hierarchical clustering can provide various levels of categori-
sation of these segments, based on a threshold value used.
This threshold is directly related to the distance value from
the DTW search, with zero indicating a perfect match. We
observed the value around 2.5 to be suitable (depicted as a
red line in Figure 3). The use of this threshold resulted in
grouping of the 1500 segments into 142 clusters. The oc-
cupancy of clusters is depicted in Figure 4. It can be seen
that out of these 142 clusters, there is a large number of clus-
ters with a very low occupancy. We have observed that these
low-occupancy clusters corresponded to a variety of acous-
tic events, such as tonal noise, speech or infrequent vocalisa-
tions of other birds/animals, which are due to the recordings
coming from real world natural environments. Out of these
142 clusters, for instance, there are 99 clusters with an oc-
cupancy of 6 acoustic segments or less. These 99 clusters
attracted altogether only 241 acoustic segments. The remain-
ing 43 higher-occupancy clusters attracted 1259 segments out
of 1500. These clusters are considered to correspond to the
bird vocalisations named in the recording.
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Fig. 4. Occupancy of clusters.

A part of the obtained clustering result is presented in Fig-
ure 5. In the figure, each row corresponds to an individual
cluster found and each column shows an example of the fre-
quency track of a DTW found partial segment associated with
that cluster. The first three rows correspond to clusters with
the highest occupancy, each containing over 100 segments.
These are marked in the hierarchical tree in Figure 3 by num-
ber from 1 to 3. As can be seen from Figure 5, frequency
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tracks within each cluster show great similarity to each other,
while across clusters show clearly distinctive patterns.
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Fig. 5. A part of the outcome of the unsupervised clustering
depicting several examples of frequency tracks (where the x-
and y-axis corresponds to the frame-time and frequency in-
dex, respectively) of partial segments associated with eight
different clusters (corresponding to each row).

6. CONCLUSION

In this paper, we presented an approach for unsupervised dis-
covery of bird vocalisation patterns. The proposed approach
employed frequency tracks as features to characterise bird
tonal vocalisations. These frequency tracks were estimated by
employing a method for detection of sinusoidal components,
without requiring any information about noise estimate. We
developed a modified dynamic time warping algorithm that
allowed to search for multiple and partial machings between
the given sequences. The obtained distances between the se-
quences, as outcome of the DTW search, were then used in
a hierarchical clustering. It was demonstrated that the ob-
tained clusters showed good coherence and provided a set of
structurally distinct bird vocalisation patterns. The presented
work can also be applied to birds producing non-tonal vocali-
sations, or audio signals in general, by using a different set of
features, instead of the frequency tracks.
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