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MODELING SUBJECTIVE EVALUATION OF MUSIC SIMILARITY USING TOLERANCE
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Nagoya University Graduate School of Information Science

ABSTRACT

In order to improve the automated retrieval of similar songs,

we need to develop an estimation method which can measure

their subjective similarity. In this study, we assume that sub-

jective similarity of songs is determined by both the acoustical

similarity of the songs and the individuality of the listener. We

focus mainly on the individuality of listeners, and use knowl-

edge about this individuality to develop a subjective similarity

estimation model.

The results of our previous study suggest that the likeli-

hood of someone judging two songs (a musical pair) as “sim-

ilar” is influenced by the individual characteristics (individu-

ality) of the listener. In this paper we refer to the likelihood

of judging songs to be similar as the “tolerance” of the lis-

tener, and propose a model of subjective similarity evaluation

which takes individual tolerance into account. In our experi-

ment, we estimate listeners’ tolerance using subjective musi-

cal similarity evaluation data. We also conduct an experiment

using a much smaller amount of similarity evaluation data to

estimate tolerance, as this would be desirable for practical ap-

plications.

Index Terms— music similarity, subjective similarity,

similarity evaluation, individuality

1. INTRODUCTION

With the emergence of mass storage media and the improve-

ment of data compression technology, users can experience

difficulty finding desired songs from a large database due to

the quantity of data. Estimating subjective music similarity,

and using this information for the retrieval of songs, is one

possible solution to this problem.

Estimation of subjective similarity could be realized if we

could extract acoustic features that are important for music

perception and compare these features as humans do. How-

ever, it is difficult to estimate subjective music similarity

from acoustic similarity because human music perception is

not well understood. Furthermore, there is some individual

variation among listeners regarding similarity perception,

i.e., some listeners may feel two songs are similar, while

other listeners may feel the same two songs are dissimilar.

In this study we assume that subjective similarity of music

This work was supported by JSPS KAKENHI Grant Number 25540168.

is determined by two factors, the acoustical similarity of the

song pairs and the individuality of the listener. The goal

of our study is to shed light on the acoustic features which

contribute to musical similarity, and on the individuality of

listeners, and use this information to develop a method of

subjective similarity estimation.

Studies to estimate music similarity have been conducted

widely in the field of music information processing. For

example, Pampalk [1] extracted Mel-Frequency Cepstrum

Coefficients (MFCC) for short time frames, fitted Gaussian

distributions or Gaussian Mixture Models (GMMs) to each

song, and calculated Kullback-Leibler divergences between

the songs as a measure of timbre similarity. Other acoustic

features which have been used widely are spectral centroids

and zero crossing rates as timbre features, chroma vectors as

tonal features, fluctuation patterns [2], and rhythm histograms

as rhythm features [3].

There have been several studies related to individuality

for the purpose of music retrieval. These studies combined

listeners’ preferences or individuality of similarity evaluation

with objective similarity. Hoashi et al. [4] proposed a mu-

sic recommendation method which employs users’ preferred

songs or genres, and constructs vectors that reflect users’ pref-

erences. Vignoli and Pauws [5] measured musical similarity

by weighting a combination of five features; timbre, genre,

tempo, mood and year. They tried to reflect individual pref-

erences in their system, letting users set parameters manu-

ally. Lampropoulos et al. [6] proposed a system that retrieved

similar songs using a neural network. Their system uses the

acoustical features of songs as input and optimizes neural

networks with the users’ rankings and similarity ratings for

the retrieved songs. They assumed that the features that con-

tribute to music perception are different for each individual,

so they used feature subsets to allow users to choose optimal

subsets. Kawabuchi et al. [7] conducted an experiment in

which subjects evaluated the musical similarity of song pairs

as similar or dissimilar, and the collected data was then used

to train distance functions between songs that reflected each

subject’s individual similarity judgment.

In [7], they indicated that the frequency of making a “sim-

ilar” judgment varied widely between subjects (Fig. 1). This

result implies that there is a large amount of individual varia-

tion in the likelihood of judging a musical pair to be “similar”.

However, the musical similarity model used in that paper did
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Fig. 1. Histogram of number of pairs judged as “similar”.

This indicates how many pairs were judged as similar in 200

trials (average 43.4 times). Most of the subjects are concen-

trated around the average, however, outlier subjects also exist

(least 9 times, most 123 times).

not make use of this observation. In this paper, we refer to the

likelihood of judging a musical pair to be similar as the“ tol-

erance”of the listener, and propose a model of subjective

similarity evaluation which takes this tolerance into account.

Our subjective similarity evaluation model is proposed in

Section 2. In Section 3, we adapt the proposed model by tak-

ing into account subjective evaluation data, and estimate each

subject’s tolerance. The paper is concluded in Section 4.

2. SUBJECTIVE EVALUATION MODEL

We assume that the outcome of a similarity evaluation is de-

termined by the acoustic similarity of a musical pair and by

the tolerance of the listener. If a pair of songs is judged to

be “similar” by most listeners, a listener who has a high level

of tolerance should also judge that musical pair to be simi-

lar. Musical pairs which are near a “decision boundary” are

sometimes judged as “similar”, but at other times judged as

“dissimilar”. In light of these facts, we model the probability

that a listener i judges a musical pair j to be “similar” with a

logistic function:

p(eij = 1|si, pj) = 1

1 + e−(si+pj)
(1)

where eij is the result of a similarity evaluation by listener i in

regards to musical pair j. eij = 1 means that listener i judged

musical pair j to be “similar” and eij = 0 means that listener

i judged musical pair j to be “dissimilar”. si and pj represent

the tolerance of listener i and the similarity of musical pair j,

respectively. If si is large, listener i is likely to judge a pair of

songs to be similar. If pj is large, musical pair j is likely to

be judged to be similar.

2.1. Parameter estimation

Suppose we have data on the similarity judgments of M sub-

jects in regards to N musical pairs. If we apply our subjective

evaluation model to the data, the likelihood of the model can

be expressed as follows:

p(E|s,p)

=
M∏
i=1

N∏
j=1

p(eij = 1|si, pj)eijp(eij = 0|si, pj)1−eij

(2)

where E = (e11, . . . , eij , . . . , eMN ), s = (s1, . . . , sM ) and

p = (p1, . . . , pN ). By maximizing this likelihood, we can

estimate the optimal values for s and p.

Notice that this model has a problem: if musical pair j
is evaluated as“ dissimilar” by all listeners (our experi-

mental data includes many such pairs, in fact), the optimal

pj is clearly −∞. To avoid this problem, we assume that

parameters s and p follow some prior distributions, p(s)
and p(p), and we estimate s and p which maximize pos-

terior probability p(s,p|E). In this paper, we assume that

the prior distributions of tolerances si(i = 1, . . . ,M) and

similarities pj(j = 1, . . . , N) follow independent and iden-

tically distributed Gaussian distributions N (si|μs, σ
2
s) and

N (pj |μp, σ
2
p), respectively. To maximize the posterior proba-

bility p(s,p|E), we should maximize the following equation:

p(s)p(p)p(E|s,p)

=

M∏
i=1

N (si|μs, σ
2
s)

N∏
j=1

N (pj |μp, σ
2
p)

M∏
i=1

N∏
j=1

p(eij = 1|si, pj)eijp(eij = 0|si, pj)1−eij .

(3)

To estimate the values for s and p which maximize (3), we

set the objective function as follows:

L = log {p(s)p(p)p(E|s,p)}

∝ −
M∑
i=1

(si − μs)
2

2σ2
s

−
N∑
j=1

(pj − μp)
2

2σ2
p

−
M∑
i=1

N∑
j=1

[
(1− eij) (si + pj)

+ log
{
1 + e−(si+pj)

}]
. (4)

Partially differentiating L with respect to si(i = 1, . . . ,M)
and pj(j = 1, . . . , N),

∂

∂si
L =

N∑
j=1

[
e−(sm+pj)

1 + e−(sm+pj)
− (1− eij)

]

− 1

σ2
s

(si − μs), (5)
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∂

∂pj
L =

M∑
i=1

[
e−(si+pn)

1 + e−(si+pn)
− (1− eij)

]

− 1

σ2
p

(pj − μp). (6)

Setting (5) and (6) to equal 0, the optimal parameters for s and

p can be obtained as the solution of the system of equations.

2.2. Parameter estimation algorithm

To calculate the values of s = (s1, . . . , sM ) and p =
(p1, . . . , pN ) which maximize objective function L, we up-

date the parameters iteratively as follows:

si ← si + η
∂

∂si
L (i = 1, 2, . . . ,M) (7)

pj ← pj + η
∂

∂pj
L (j = 1, 2, . . . , N) (8)

where η is the learning rate. By repeating this procedure until

objective function L converges, estimators of s and p can be

obtained.

3. APPLYING MODEL TO SUBJECTIVE
EVALUATION DATA

By applying our subjective evaluation model to subjective

musical similarity evaluation data, the tolerance of subjects

and the similarity of musical pairs were estimated. We also

estimated tolerance using a smaller number of evaluations,

because it is desirable in practice if the tolerance of listeners

can be estimated with less evaluation data.

3.1. Data used for experiment

For this experiment, we used subjective similarity evaluation

data[7]1 for 200 musical pairs chosen from 80 popular mu-

sic songs in the RWC music database [8]. The experimen-

tal procedure was as follows. First, each subject listened to

two songs (a musical pair) and then evaluated their similarity

as “similar” or “dissimilar”. The subject then selected musi-

cal components (melody, tempo/rhythm, vocals, instruments)

which they felt as similar. Each subject evaluated the same

200 musical pairs. The number of subjects who participated

in the experiment was 27 (13 males and 14 females).

We only used the overall similarity evaluation data in this

study, i.e., data collected on the similarity of the musical com-

ponents of the songs was not used. Using this data as E, we

estimated the tolerance of the subjects and the similarity of

the musical pairs.

1http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SSimRWC/

3.2. Applying subjective evaluation model

We applied the subjective evaluation model to the data de-

scribed in 3.1. We estimated parameters si(i = 1, . . . ,M)
and pj(j = 1, . . . , N) for each subject and pair using the pa-

rameter estimation algorithm described in 2.2. We used the

Gaussian random numbers (μ = 0 and σ2 = 1) as the initial

values of si(i = 1, . . . ,M) and pj(j = 1, . . . , N) for the it-

erative algorithm. Parameters of prior distributions p(s) and

p(p) were μs = 0, σ2
s = 1, μp = 0 and σ2

p = 1. Iterations

were performed until the objective function L converged.

The estimated tolerances and similarities are shown in

Fig. 2. The lines in the figure represent decision boundaries

(the planes on which the probability of a pair being judged

similar or dissimilar is 50%). The ratio of correct discrimina-

tion to the total number of evaluations (ratio of the number of

“similar” points at which si+pj > 0 plus the number of “dis-

similar” points at which si + pj ≤ 0) was 0.842. From these

results we can see that while “dissimilar” points could be dis-

criminated with a high degree of accuracy (the discrimination

rate was 95.8%), “similar” points could not be discriminated

as well (the discrimination rate was 42.5%). This result was

probably caused by the large difference in the number of “dis-

similar” and “similar” points. The number of pairs judged to

be “similar” was 1171, while the number of pairs judged to

be “dissimilar” was 4229, out of 5400 (27 × 200) total evalu-

ations.

3.3. Estimation of tolerance using a small number of eval-
uations

In order to predict subjective evaluations using our model, the

tolerance of the subject and similarity of a musical pair should

be known. Similarity of the pairs can be estimated using the

acoustic features of the songs, while the tolerance of listeners

can be estimated using a listener’s prior evaluations. How-

ever, in practice, requiring listeners to evaluate a large number

of musical pairs is not realistic. Therefore, it would be better

if tolerance estimation could be done using the evaluation data

of only a small number of musical pairs. In 3.2 we estimated

tolerance and similarity by applying a subjective evaluation

model to subjective evaluation data for 27 subjects × 200

musical pairs. In this section, we conduct an experiment to

estimate the tolerance of subjects using evaluations and given

similarities of smaller numbers of pairs chosen from the orig-

inal 200 pairs. Before we describe the experiment, we will

explain the two estimation methods used.

3.3.1. Maximum likelihood

Suppose tolerance of subject i is si and similarities of n musi-

cal pairs chosen from 200 musical pairs are p = (p1, . . . , pn).
p has already been estimated using the acoustic features of the

songs. The optimal parameters for si which maximize poste-

rior probability p(s,p|E) can be calculated by maximizing

3
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Fig. 2. Scatter plots of “similar” points (left figure) and “dissimilar” points (right figure) on the tolerance-similarity plane.

Vertical axis is subject’s tolerance, and horizontal axis is a pair’s similarity. Lines on the figure represent discrimination

surfaces si + pj = 0, and it is desirable that “similar” points are on the right side of this surface and “dissimilar” points are on

the left side.

the objective function (4) as in 2.2.

3.3.2. Evaluation patterns

We can express the similarity evaluations of subject i for n
musical pairs as ei = (ei1, ei2, . . . , ein), where eij = 1 for

“similar” evaluations and eij = 0 for “dissimilar” ones. If we

have evaluation data for a number of listeners and their toler-

ance has already been calculated, we can estimate the toler-

ance of an unknown listener using these evaluation patterns.

If we calculate the Hamming distance between the evaluation

patterns of the unknown listener and the patterns of known

listeners, we can then use the tolerance of the known listener

with the most similar Hamming distance to the unknown lis-

tener as the estimated tolerance of the unknown listener.

3.4. Prediction of subjective evaluation

An experiment to estimate tolerance with a small number of

subjective evaluations was conducted. The experimental pro-

cedure was as follows. First, 200 musical pairs were divided

into 10 groups. Then one of these groups of pairs was cho-

sen for testing. Next, varying numbers of pairs were chosen

randomly from the remaining nine groups for estimating tol-

erance. A subject’s tolerance was then estimated using the

methods explained in 3.3.1 and 3.3.2. After tolerance was

estimated, subjective evaluations for 20 test pairs were pre-

dicted and prediction accuracy was calculated. The numbers

of pairs used for tolerance estimation were 3, 4, 5, 10, 20, 30,

40, 50, 60, 70, 80, 90 and 100. This procedure was repeated

for all subjects and all groups of musical pairs (27 subjects ×
10 groups of song pairs).

As similarities p are necessary for prediction, the follow-

ing two similarities were used:

• Euclidean distances between acoustic feature vectors

(logarithmic VQ histogram) [7]

• Similarities pj estimated using data from 26×200 eval-

uations (for comparison; these can be considered as the

ideal similarities)

The method of calculating acoustical feature vectors was as

follows. Mel Frequency Cepstrum Coefficients (1-13 coef-

ficients), intensity [9], spectral centroid, spectral flux, spec-

tral roll-off, and high frequency energy [10] were extracted as

short-term features. For each feature, first and second order

temporal differentials were calculated and used as short-term

features. The short-term features referred to above are di-

mensionally reduced through Principal Component Analysis

(PCA) to capture 95% of the variance and then quantized us-

ing an LBG algorithm. By obtaining a relative histogram of

centroids for each song, each song can be represented as a

unique feature vector. Then, feature vectors are converted by

calculating the logarithm of each bin.

Experimental results are shown in Fig. 3. Mean discrim-

ination rates increase as the number of pairs used for train-

ing increases under all conditions. With the maximum like-

lihood method, we need 20 to 30 musical pairs for training

to reach the highest level of prediction accuracy, while we

need less than 10 pairs using the evaluation pattern method to
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Fig. 3. Plot of the mean discrimination rates according to the

number of pairs used for training. Solid lines represent results

obtained using maximum likelihood method to estimate tol-

erance. Dotted lines represent results obtained using the eval-

uation pattern method. Red lines with circular markers repre-

sent results obtained using similarity pj and blue lines with x-

markers represent results obtained using acoustical features.

achieve an acceptable level of accuracy. However, the method

which uses evaluation patterns achieved lower prediction ac-

curacy than the maximum likelihood method. We believe this

is because there are a few outlying subjects whose subjective

evaluation data was not similar to that of any other subjects.

Therefore, their evaluations could not be predicted with a high

degree of accuracy using the evaluation pattern method.

4. CONCLUSION

In this paper we proposed a model for estimating the subjec-

tive similarity of songs by incorporating a listener’s tolerance

as a parameter. This model assumes that subjective similarity

evaluations are determined by the tolerance of the listener and

by the acoustic similarity of the musical pair. We explained

how we formulated this model and how we developed our

parameter estimation algorithm. We used subjective similar-

ity evaluation data to estimate the parameters of our model,

and the resulting model was able to achieve an evaluation

prediction rate of 84.2%. We also conducted an experiment

that estimated listeners’ tolerance using a smaller number of

evaluations. We proposed two methods to estimate tolerance,

maximum likelihood and a method which uses evaluation pat-

terns. Results showed that the method using evaluation pat-

terns could achieve a high level of prediction accuracy even

when the number of pairs used for training was small (i.e.,

less than 10).

The subjective similarity evaluation model proposed in

this paper assumes that all listeners perceive one identical

type of music similarity, and that the difference between lis-

teners is based only on differences in tolerance. This is prob-

ably an unrealistic assumption, however. Actual listeners are

likely to perceive multiple types of similarities (e.g., similar-

ities in timbre, rhythm, and so on) and tolerances are likely

to vary in regards to each perceptual similarity. Therefore, in

our future work it is important to extend our subjective sim-

ilarity evaluation model to include multiple similarities and

tolerances.
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