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ABSTRACT

We propose a method for distributed sequential estimation
in the presence of correlated noises. At each time slot,
a node exchanges information with its neighbors and then
updates the estimate by using the received information from
its neighbors and its local observation. It is assumed that
the noises have the Markov property with respect to the
network topology. A doubly stochastic matrix for combining
information from the nodes is employed to average the
sufficient statistics over the network. We show that the
performance of the proposed method converges to that of
the centralized optimal estimator as the iterations go on.
Therefore, our algorithm approaches the Cramér-Rao bound
asymptotically.

Index Terms— Correlated noises, distributed estimation,
least squares estimator, sequential estimation

1. INTRODUCTION

Methods for distributed processing of data have been
attracting scholars from different areas for decades [1]. These
methods have been of interest in various areas including
wireless sensor networks, agent networks, and social learning.
In this paper, we focus on a sequential learning problem,
where the parameters of interest are static and at every time
slot each node obtains local observations with information
about the static parameters. The objective is to estimate
the parameters in a distributed way. This problem has been
studied in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In [7], the
authors compare the mean-square performance of two main
strategies for distributed estimation: consensus strategies
and diffusion strategies. They claim that diffusion leads
to faster convergence and lower mean-square deviation than
consensus. Note that when the parameters of interest are
dynamic, the problem becomes sequential filtering, which is
another popular category of distributed estimation problems.
See [12, 13, 14], for example. In this paper, we propose
an efficient estimation algorithm for the case where the
noises are correlated. This algorithm is neither diffusion nor
consensus, but it is closer in spirits to the latter. We use a

This work was supported by NSF under Award CCF-1018323.

doubly stochastic matrix to combine the information from
different nodes at each iteration. We prove that our algorithm
approaches the optimal centralized least squares estimator
asymptotically.

The paper is organized as follows. The problem is
formulated in Section 2. The proposed algorithm is described
in Section 3 and is analyzed in Section 4. Section 5 provides
simulation results, and Section 6 concludes the work.

We use the following notation: det(A) is the determinant
of a matrix A; tr(A) is the trace of A; O is a matrix with all
entries equal to zero; 1M and 0M refer to column vectors of
size M × 1 with all entries equal to 1 and 0, respectively;
λi(A) signifies the ith eigenvalue of A, and λmin(A) is the
minimum eigenvalue ofA; IM is the identity matrix with size
M ×M ; A> is the transpose of the matrix A; Ni represents
the set of nodes that are neighbors of node i; N is the set of
natural numbers; ‖A‖ means the Frobenius norm of A,

‖A‖ =
√

tr(AA>); (1)

δi,j is the Kronecker delta and ⊗ is the Kronecker product.

2. PROBLEM FORMULATION

The problem is mathematically formulated as follows. The
network is represented byG = (V,E), where V andE are the
sets of nodes and edges, respectively. Two nodes exchange
information with each other only if there is an edge between
them. We assume there are N nodes in the network, namely
N = |V |. Let θ ∈ RL×1 be a parameter vector of interest. At
time instant t, the observation at node i is modeled as

yi,t = Hi,tθ + wi,t, (2)

where wi,t, yi,t ∈ RM×1, Hi,t ∈ RM×L; Hi,t is the
observation matrix; yi,t is the observation; and wi,t is a
Gaussian noise vector, where

E[wi,t] = 0M (3)

E[wi,tw
>
j,s] = δt,sΣi,j , (4)

and Hi,t is full rank. Let
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Ht =

H1,t

...
HN,t

 , yt =

y1,t...
yN,t

 , wt =

w1,t

...
wN,t

 , (5)

and

Σ =

Σ1,1 · · · Σ1,N

...
. . .

...
ΣN,1 · · · ΣN,N

 . (6)

The matrix Σ is assumed to be strictly positive definite. Then
the entire model can be expressed as

yt = Htθ + wt, (7)

where wt is zero mean white Gaussian noise with covariance
matrix Σ. From all the observations received at t, the least
squares estimator is [15]

θ̂t =
(
H>t Σ−1Ht

)−1
H>t Σ−1yt. (8)

We assume that wi,t satisfies the Markov property with
respect to the graph G, i.e., the noises of any pair of
nonadjacent nodes are conditionally independent given the
remaining noise values,

p(wi,t, wj,t|wV \i,j) = p(wi,t|wV \i,j)p(wj,t|wV \i,j)

for all {i, j} /∈ E, and for all t ∈ N. (9)

Let K = Σ−1, and since it is the inverse of the covariance
matrix, we call it the precision matrix. Since wi,t is Gaussian,
we have [16]

Ki,j = O for all {i, j} /∈ E, (10)

where Ki,j is the (i, j)th block of K.
Given the observations from the beginning to time instant

t, the least squares estimate θ̃t can be expressed as

θ̃t =

(
t∑

s=1

H>s KHs

)−1 t∑
s=1

H>s Kys, (11)

where
∑t

s=1H
>
s Kys represents the sufficient statistics of the

model. Our objective is to calculate θ̃t in a distributed way.

3. THE PROPOSED ESTIMATION ALGORITHM

In this section, we describe the proposed algorithm. We
assume node i has access to Hj,t for j ∈ Ni through
communication at time instant t. Let Q ∈ RN×N be a doubly
stochastic matrix, which satisfies

Q1N = 1N , 1>NQ = 1>N . (12)

Denote by Qi,j and Qt
i,j the (i, j)th entry of Q and Qt,

respectively. We note that Qi,j = 0 if nodes i and j are

not connected. Such Q can be constructed by letting Q =
IN − εΞ, where Ξ is the Laplacian matrix of the graph G; ε
is a coefficient satisfying ε < 1/maxi(deg(i)), with deg(i)
denoting the degree of node i. Note that

lim
t→∞

Qt
i,j =

1

N
for i, j ∈ {1, · · · , N}. (13)

This is the principle we use behind the averaging of the
sufficient statistics.

H 1,t ,D1, t−1 , x1,t−1
1 4

3

2

H 4, t , D4, t−1 , x4, t−1

H 3, t ,D 3, t−1 , x3,t−1

H 1,t ,D1, t−1 , x1,t−1

H 1, t ,D1, t−1 , x1,t−1

H 2,t , D2, t−1 , x2, t−1

Fig. 1. Information exchange at time instant t.

In the proposed algorithm, each node keeps two matrix
variables, Di and xi, which approximate

∑t
s=1H

>
s KHs and∑t

s=1H
>
s Kys, respectively. The method is based on the

following formulas:

Di,t =
∑
j∈Ni

Qi,jDj,t−1 +
∑
j∈Ni

H>j,tKj,iHi,t (14)

=

t∑
s=1

N∑
j=1

Qt−s
i,j

∑
k∈Nj

H>k,sKk,jHj,s, (15)

xi,t =
∑
j∈Ni

Qi,jxj,t−1 +
∑
j∈Ni

H>j,tKj,iyi,t (16)

=
t∑

s=1

N∑
j=1

Qt−s
i,j

∑
k∈Nj

H>k,sKk,jyj,s, , (17)

θ̃i,t = D−1i,t xi,t, (18)

and where Q0 is defined to be the identity matrix. The
information a node transmits to its neighbors includes
Hi,t, Di,t and xi,t (see Fig. 1).

Let

Qt
(i) =


Qt

i,1IM O · · · O
O Qt

i,2IM · · · O
...

...
. . .

...
O O · · · Qt

i,NIM

 . (19)

Then (18) can be written as

θ̃i,t =

(
t∑

q=1

H>q KQ
t−q
(i) Hq

)−1 t∑
s=1

H>s KQ
t−s
(i) ys. (20)
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4. ANALYSIS

In this section, we first prove that the proposed estimator
(20) is unbiased. Secondly, we prove that (20) asymptotically
approaches the centralized estimator (11).

Let θ̂i,t be the least squares estimator based on local
observations at the current time instant,

θ̂i,t =

∑
j∈Ni

H>j,tKj,iHi,t

−1 ∑
j∈Ni

H>j,tKj,iyi,t. (21)

After substituting (2) into (21), we obtain

E[θ̂i,t] = θ. (22)

Also, by the property in (12), we can see that (20) is a linear
combination of unbiased estimates with the sum of weighting
coefficients being the identity matrix. Therefore, (20) is
unbiased.

Next we compare the proposed estimator (20) and the
centralized estimator (11). Before we proceed, we make the
following assumptions about the model:

1. The sequence {wt}t∈N is bounded,

2. The matrix {Ht}t∈N is bounded, and

3. The matrix {Ht}t∈N is full rank and does not converge
to a rank deficit matrix.

Let Yt denote all the observations to time instant t,

Yt = [y1, · · · , yt]. (23)

Consider the centralized and distributed estimators as two
functions, fc(Yt) and fd(Yt) with observations as variables.
Note that the randomness is temporarily ignored here.
We prove that the proposed algorithm is asymptotically
equivalent to the centralized estimator.

Theorem 1. Assume yt is bounded for all t, and the matrix
sequence Hq does not converge to a rank deficient matrix.
Then

lim
t→∞

(fd(Yt)− fc(Yt)) = 0. (24)

We will use the following lemma in the proof of Theorem
1 [17]:

Lemma 1. Let A,B be Hermitian matrices of size n×n and
let the eigenvalues λi(A), λi(B) and λi(A+B) be arranged
in increasing order. For each i = 1, · · · , n we have

λi(A) + λmin(B) ≤ λi(A+B). (25)

Proof of Theorem 1: Let

At =
1

N

t∑
q=1

H>q KHq, (26)

Bt =
t∑

p=1

H>p K

(
Qt−p

(i) −
1

N
IMN

)
Hp, (27)

Ct =
1

N

t∑
s=1

H>s Kys, (28)

Dt =
t∑

r=1

H>r K

(
Qt−r

(i) −
1

N
IMN

)
yr, (29)

then (11) becomes

θ̃t = fc(Yt) = A−1t Ct, (30)

whereas (20) turns into

θ̃i,t = fd(Yt) = (At +Bt)
−1(Ct +Dt). (31)

By using the Woodbury matrix identity

(At +Bt)
−1 = A−1t −A−1t (B−1t +A−1t )−1A−1t , (32)

we can write (31) as

θ̃i,t =A−1t Ct +A−1t Dt −A−1t (B−1t +A−1t )−1A−1t Ct

−A−1t (B−1t +A−1t )−1A−1t Dt (33)

=
(
I −A−1t (B−1t +A−1t )−1

)
A−1t Ct +A−1t Dt

−A−1t (B−1t +A−1t )−1A−1t Dt. (34)

Therefore, we shall prove that A−1t (B−1t + A−1t )−1 and the
last two terms in (34) go to zero as t goes to infinity. It would
be sufficient to show that Bt and Dt are bounded and A−1t

goes to zero as t goes to infinity. We first show that Bt and
Dt are bounded. The underlying principle we are using is that
any geometric series with the absolute value of the common
ratio less than 1 converges.

Note that

Bt =
t∑

s=1

N∑
j=1

(
Qt−s

i,j −
1

N

) ∑
k∈Nj

H>k,sKk,jHj,s, (35)

Dt =
t∑

s=1

N∑
j=1

(
Qt−s

i,j −
1

N

) ∑
k∈Nj

H>k,sKk,jyj,s. (36)

Let

bt = max
s∈{1,··· ,t},j∈{1,··· ,N}

∥∥∥∥∥∥
∑
k∈Nj

H>k,sKk,jHj,s

∥∥∥∥∥∥ , (37)

dt = max
s∈{1,··· ,t},j∈{1,··· ,N}

∥∥∥∥∥∥
∑
k∈Nj

H>k,sKk,jyj,s

∥∥∥∥∥∥ . (38)
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Since Q is symmetric, it can be decomposed as

Q =UΛU>, (39)

where U is an orthonormal matrix and Λ is a diagonal matrix
with eigenvalues being the diagonal entries. Then

Qt =UΛtU>. (40)

Denote by uij the (i, j)th entry of U . Then

Qt−s
i,j =

N∑
l=1

ujluilλ
t−s
l . (41)

Since Q is a doubly stochastic matrix, we know that one of
the eigenvalues is 1 with the corresponding eigenvector being
(1/
√
N)1N , and the rest of the eigenvalues are strictly less

than 1 in magnitude. Let λN = 1; we have uiNujNλt−sN = 1
N

and

Qt−s
i,j −

1

N
=

N−1∑
l=1

ujluilλ
t−s
l . (42)

Then

‖Bt‖ =

t∑
s=1

N∑
j=1

(
Qt−s

i,j −
1

N

)∥∥∥∥∥∥
∑
k∈Nj

H>k,sKk,jHj,s

∥∥∥∥∥∥
(43)

≤
t∑

s=1

N∑
j=1

(
Qt−s

i,j −
1

N

)
bt (44)

= bt

N∑
j=1

N−1∑
l=1

ujluil

t∑
s=1

λt−sl (45)

= bt

N∑
j=1

N−1∑
l=1

ujluil
1− λtl
1− λl

. (46)

Similarly,

‖Dt‖ ≤ dt
N∑
j=1

N−1∑
l=1

ujluil
1− λtl
1− λl

. (47)

‖Bt‖ and ‖Dt‖ will be bounded for as long as bt and dt are
bounded, which is true according to our assumption.

Next, we prove that A−1t goes to zero in the long run.
Since every H>q KHq is a positive definite matrix, it seems
obvious that A−1t goes to zero. But the proof is not trivial.
Since At is symmetric, the eigenvalue decomposition can
be expressed as At = UtΛtU

>
t , where Λt is a diagonal

matrix with diagonal entries being the eigenvalues; U is an
orthonormal matrix. The inverse becomesA−1t = UtΛ

−1
t U>t .

We only need to prove that each eigenvalue of At goes to
infinity. Since

At = At−1 +H>t KHt, (48)

and by Lemma 1, we have

λj(At−1) + λmin(H>t KHt) ≤ λj(At), j = 1, · · · ,M.
(49)

BecauseH>t KHt is strictly positive definite, λmin(H>t KHt)
is greater than 0. Since it is assumed that Ht does not
converge to a rank deficient matrix, {λmin(H>t KHt)}t∈N
will not converge to 0. Then A−1t converges to zero as t goes
to infinity. This completes the proof. �

Note that wt is a Gaussian process, and yt is bounded
with probability 1. Therefore, the next theorem follows
immediately.

Theorem 2. Under the assumption of Theorem 1, the
proposed estimator (20) converges to that of the centralized
estimator (11) with probability 1 in the long run.

5. SIMULATION

In this section, we test the algorithms in a network with 20
nodes. The topology is shown in Figure 2. We let L = 2,
M = 3 and θ = [1,−1]>. All the entries in H are i.i.d.
standard Gaussian variables, and ε = 0.1. Also let the
precision matrix K equal to (2IN − εΞ)⊗ S where

S =

 2 0.5 −1
0.5 2 1
−1 1 2

 . (50)

This is an easy way to specify a positive definite matrix
that satisfies the Markov property. Figure 3 shows the mean

Fig. 2. Topology of the network.

square error performance of one realization for the setting.
We can see that the performance of the proposed method
approaches the centralized estimator after 300 iterations.
Figure 4 shows the averaged results of 500 runs. The
performance of the proposed estimator converges quickly to
that of the centralized estimator.

6. CONCLUSION

In this paper, we proposed a distributed sequential algorithm
for the case where the noises are correlated. We assume that
the noises have the conditional independence property, We
show that the proposed algorithm is asymptotically equivalent

4
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Fig. 3. Performance of a sample run.
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Fig. 4. Averaged performance of 500 runs.

to the centralized algorithm, regardless of the actual values
of observation, for as long as they are bounded. Since the
centralized estimator (11) is an efficient estimator [15], and
thus, the proposed estimator asymptotically approaches the
Cramér-Rao bound. The simulations confirm the statement.

Future work includes the explicit quantification of the
convergence rate of the algorithm. For example, how fast the
distributed estimator converges to the centralized estimator;
how it depends on the size or the connectivity of the network.
Besides, here we assume thatKi,j is known to the nodes i and
j. However, a more realistic assumption would be that the
nodes only know Ci,j , and Ki,j should be calculated through
a distributed matrix inversion. The case for general K is also
worth of investigation. In addition to the spatial correlation of
noises, the temporal correlation can be incorporated into the
model to make the problem more general.
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