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ABSTRACT

We consider the FASST framework for audio source sepa-
ration, which models the sources by full-rank spatial covari-
ance matrices and multilevel nonnegative matrix factorization
(NMF) spectra. The computational cost of the expectation-
maximization (EM) algorithm in [1] greatly increases with
the number of channels. We present alternative EM updates
using discrete hidden variables which exhibit a smaller cost.
We evaluate the results on mixtures of speech and real-world
environmental noise taken from our DEMAND database. The
proposed algorithm is several orders of magnitude faster and
it provides better separation quality for two-channel mixtures
in low input signal-to-noise ratio (iSNR) conditions.

Index Terms— Audio source separation, FASST, EM al-
gorithm, binary masking, DEMAND.

1. INTRODUCTION

We consider the problem of under-determined reverberant
source separation, that is to separate the signals of J sources
from a mixture recorded by an array of I < J microphones.
See [2, 3] for a review. Numerous techniques have been pro-
posed, ranging from early multichannel spatial filtering and
single-channel spectral modeling techniques [4, 5] to recent
techniques jointly exploiting spatial and spectral cues [1, 6].
The general Gaussian model-based framework in [1], which
underlies the FASST toolbox1, is currently one of the most
advanced frameworks which enables the modeling of rever-
berant sources by means of full-rank spatial covariance ma-
trices and the enforcement of spectral constraints by means
of multilevel nonnegative matrix factorization (NMF).

For historical reasons, most of these techniques have been
designed or assessed in two-channel scenarios. Additional
microphones can improve the separation performance by in-
creasing the spatial resolution of the array, but they imply a
greater computational cost. The increase of the computational

1Flexible Audio Source Separation Toolbox, a MATLAB toolbox which
can be found at http://bass-db.gforge.inria.fr/fasst/

cost as a function of the number of channels is especially dra-
matic (cubic) for Gaussian expectation-maximization (EM)-
based techniques which consider the source signals as hidden
data [1,7,8]. Based on the idea of binary masking [4], a range
of techniques have been proposed that provide a smaller cost
increase by assuming that a single source predominates in
each time-frequency bin and by considering the correspond-
ing source indexes as discrete hidden data [6, 9, 10]. In [11],
the source separation algorithm by Duong [12] is investigated
by an EM algorithm targeting this hidden data.

In this paper, we propose a binary activation EM (BAEM)
algorithm for the FASST framework, which extends the algo-
rithm in [11] to multichannel NMF modeling of the spectra
instead of unconstrained spectra. This algorithm exhibits a
quadratic cost increase as a function of the number of chan-
nels while retaining the latter desirable feature of FASST, en-
abling the enforcement of spectral or temporal constraints on
the source short-term spectra. We also test the algorithm for
source separation in a noisy environment and we consider a
larger number of experimental conditions, such as the level of
background noise and the number of channels.

The structure of the rest of the paper is as follows. We
recall the conventional EM algorithm for FASST in Section 2
and describe the BAEM algorithm as it fits within the FASST
framework in Section 3. We evaluate them in Section 4 and
conclude in Section 5.

2. GAUSSIAN MODEL-BASED SOURCE
SEPARATION

2.1. Model

Using the Short-Time Fourier Transform (STFT), the I × 1
vector xfn of mixture STFT coefficients in time frame n and
frequency bin f can be expressed as [3]

xfn =
∑J

j=1
yj,fn + bfn. (1)

where yj,fn is the spatial image of the jth source and bfn is a
small Gaussian noise with covariance Σb,fn. FASST models
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the spatial images of all sources as Gaussian random vectors

yj,fn ∼ N (0, vj,fnRj,f ) (2)

where vj,fn denotes the short-term power spectrum of the jth
source and Rj,f its spatial covariance matrix. The short-term
power spectra Vj = [vj,fn]f,n of each source are further as-
sumed to factor in a multilevel NMF fashion as

Vj =
(
Wex

j Uex
j Gex

j Hex
j

)
�
(
Wft

j Uft
j Gft

j Hft
j

)
(3)

where the nonnegative matrices Wex
j , Uex

j , Gex
j and Hex

j en-
code the fine spectral structure, the spectral envelope, the tem-
poral envelope and the temporal fine structure of the source
excitation signal and Wft

j , Uft
j , Gft

j and Hft
j the same quanti-

ties for the spectral resonance filter, and� denotes entry-wise
matrix multiplication. In the following, we assume that the
sources are reverberated or diffuse, so that Rj,f is full-rank.

2.2. Subsource EM algorithm

Given this model, the log-likelihood can be expressed in terms
of the empirical mixture covariance matrix R̂x,fn in each
time-frequency bin. The classical approach for maximum
likelihood (ML) inference in such Gaussian models is to em-
ploy the EM algorithm, where the source time-frequency co-
efficients themselves are considered as hidden data [7, 8].

This approach was applied to FASST by defining vectors
of subsource2 coefficients sj,fn such that yj,fn = Aj,f sj,fn
with Aj,fAH

j,f = Rj,f and by considering them as hidden
data [1]. The resulting subsource EM (SSEM) updates are
summarized in Algorithm 1 and Figure 1. The E-step relies on
the computation of the Wiener filter Ωs,fn, while the M-step
involves a closed-form update for Af = [A1,f , . . . ,AJ,f ]
and multiplicative updates for the multilevel NMF parame-
ters. Strictly speaking, this is a generalized EM (GEM) algo-
rithm because the multiplicative updates increase but do not
maximize the log-likelihood of the complete data.

Once the parameters θ = {Rj,f ,W
ex
j ,U

ex
j ,G

ex
j ,H

ex
j ,

Wft
j ,U

ft
j ,G

ft
j ,H

ft
j }j,f have been estimated, the source STFT

coefficients are obtained via the Wiener filter

ŷj,fn = vj,fnRj,f

(∑J

j=1
vj,fnRj,f

)−1

xfn. (4)

2.3. Complexity

Although it has been successfully employed for the separation
of two-channel mixtures [1, 3], the SSEM algorithm has two

2This concept generalizes that of “source” when Rj,f is full-rank.
3The eight matrices in (3) are updated in turn. Denoting by Cj the ma-

trix to be updated, the factorization (3) can always be rewritten as Vj =
(BjCjDj) � Ej , where the nonnegative matrices Bj , Dj and Ej are as-
sumed to be fixed while Cj is updated. For example, if Cj = Hft

j , then
Bj = Wft

j Uft
j Gft

j , Dj = I and Ej = Wex
j Uex

j Gex
j Hex

j .

Algorithm 1 SSEM algorithm for FASST [1].
E-step - Compute the full data statistics

R̂xs,fn = R̂x,fnΩH
s,fn (5)

R̂s,fn = Ωs,fnR̂x,fnΩH
s,fn + (I−Ωs,fnAf )Σs,fn (6)

where

Ωs,fn = Σs,fnAH
fnΣ−1

x,fn (7)

Σx,fn = AfΣs,fnAH
f + Σb,fn (8)

Σs,fn = diag(vj,fn . . . vj,fn︸ ︷︷ ︸
Itimes

)Jj=1. (9)

M-step - Update the model parameters (see [1] for notation3)

Af =
(∑

n
R̂xs,fn

)(∑
n

R̂s,fn

)−1

(10)

Cj = Cj �
BT

j [Ξ̂j �E.−1
j � (BjCjDj)

.−2]DT
j

BT
j (BjCjDj).−1DT

j

(11)

where Ξ̂j = [ξ̂j,fn]f,n with

ξ̂j,fn =
1

I

∑jI

r=(j−1)I+1
(R̂s,fn)rr. (12)

initial source model parameters
E-step

invert the mixture covariance 

matrix and compute its determinant

for every 

time-frequency bin

compute the source posterior 

mean and covariance

update the model parameters (only 

matrix addition/multiplication and 

scalar division required)

for every set of 

model parameters

final source model parameters

M-step

for every source

Fig. 1. Processing schema of SSEM.

drawbacks when the number of channels I increases. First,
the computational cost of each iteration becomes dominated
by that of the matrix multiplications and inversions in (5)–(8),
which grows in O((J2 + 6J + 2)I3FN) for N time frames
and F frequency bins. Second, we have found in preliminary
experiments that the increase in the size of the hidden data
space requires more iterations until convergence. Altogether,
this results in a major increase of the computational cost.
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3. BINARY ACTIVATION EM

In order to address these drawbacks, we propose here the
faster BAEM algorithm for FASST under the assumption that
a single source predominates in each time-frequency bin [11].
An approximate generative model is proposed for the mixture
signal and a GEM algorithm is derived by considering the
corresponding source indexes as discrete hidden data.

3.1. Model

Denoting by lfn the index of the predominant source in time-
frequency bin (f, n), we replace the generative model (1) by

xfn = ylfn,fn with lfn ∼ Cat(π1,fn, . . . , πJ,fn) (13)

where the source spatial image coefficients yj,fn follow the
same model as in (2)–(3) and Cat denotes the categorical dis-
tribution. The prior probability πj,fn that the jth source be
predominant in this time-frequency bin may be set to zero in
certain time frames for those sources which are known to be
inactive and uniformly shared among the other sources.

3.2. Algorithm

We then conduct ML inference by considering lfn as hidden
data. The resulting BAEM updates [11] are summarized in
Algorithm 2 and Figure 2. The E-step consists of comput-
ing the posterior probability γj,fn = P (lfn = j|x, θ) of lfn
and the M-step of solving the optimization problem θ = arg
max

∑
j,fn γj,fn[− tr(Σ−1

y,j,fnR̂x,fn)− log det(πΣy,j,fn)].
For the source spatial covariance matrices Rj,f , the update
is obtained in closed form. For the multilevel NMF parame-
ters, this optimization problem is equivalent to the weighted
multilevel NMF problem argmin

∑
fn γj,fndIS(ξ̂j,fn|vj,fn)

where dIS(x|y) = x
y − log x

y − 1 is the Itakura-Saito (IS) di-

vergence and ξ̂j,fn is defined in (18), which can be addressed
using weighted multiplicative updates [13]. After conver-
gence, the sources are separated by soft masking

ŷj,fn = γj,fn xfn. (14)

3.3. Complexity

BAEM does not require matrix multiplications and inversions
in each time-frequency bin anymore. By rewriting (15) as

γj,fn ∝ πj,fn
e− tr(R−1

j,f R̂x,fn)/vj,fn

(πvj,fn)I det(Rj,f )
, (19)

it appears that the inverse and the determinant of Rj,f must
be computed only once for each source in each frequency bin
instead. For typical values of N , this has negligible cost and
the cost of each iteration becomes dominated by that of the
matrix dot product tr(R−1

j,fR̂x,fn) in (19), which grows in

Algorithm 2 Proposed BAEM algorithm for FASST.
E-step - Compute the posterior probability of lfn

γj,fn ∝ πj,fn
e− tr(Σ−1

y,j,fnR̂x,fn)

det(πΣy,j,fn)
(15)

where Σy,j,fn = vj,fnRj,f .

M-step - Update the model parameters (see [1] for notation3)

Rj,f =

∑
n γj,fnR̂x,fn/vj,fn∑

n γj,fn
(16)

Cj = Cj �
BT

j [Γj � Ξ̂j �E.−1
j � (BjCjDj)

.−2]DT
j

BT
j [Γj � (BjCjDj).−1]DT

j

(17)

where Γj = [γj,fn]f,n, Ξ̂j = [ξ̂j,fn]f,n and

ξ̂j,fn =
1

I
tr(R−1

j,fR̂x,fn). (18)

initial source model parameters
E-step

invert the source spatial covariance 

and compute its determinant

for every source 

and frequency bin

compute the source posterior 

probability

update the model parameters (only 

matrix addition/multiplication and 

scalar division required)

for every set of 

model parameters

final source model parameters

M-step

for every time frame

Fig. 2. Processing schema of BAEM.

O(JI2FN). The complexity of each iteration is therefore re-
duced by a factor on the order of (J + 6)I . Furthermore, we
have found by monitoring the log-likelihood in preliminary
experiments that the number of iterations needed to reach con-
vergence is one order of magnitude smaller than for SSEM,
which is a natural consequence of the drastic reduction of the
size of the hidden data space (from I × J ×F ×N complex-
valued variables to F ×N discrete variables).

One limitation of BAEM compared to SSEM is that soft
masking induces a smaller oracle upper bound [3] on the sepa-
ration performance than multichannel Wiener filtering. How-
ever, we will see that this does not prevent BAEM from con-
verging to better solutions than SSEM in certain conditions.
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4. EXPERIMENTAL EVALUATION

4.1. Acoustic setup

In our experimental setup, one or two target speech signals
are convolved by room impulse responses simulated via the
source image technique and added to field recordings of envi-
ronmental noise, as classically done in source separation eval-
uations [3]. The publicly available database of 16-channel
noise recordings (DEMAND) [14] is used. The microphone
array setup, the room dimensions and the reverberation time
in the simulated environment mirror those in the physical en-
vironments in which the DEMAND data was recorded.

Of the original 16 recorded channels, a subset correspond-
ing to a planar array of 8 microphones in three staggered rows
is used. The simulated target sources are placed 1 m away
from microphone 1 of the array, separated by 45 degrees, in
the same plane as the array, 1.5 m off the ground. Proper
subsets of the multichannel data are also evaluated. In the
two-channel case, only the two microphones of the center row
are used, and in the four-channel case, the four microphones
forming a diamond in the center of the array are used.

We use 5 s excerpts from 10 of the noise recordings
in DEMAND: NFIELD, NPARK, OHALLWAY, OOFFICE,
PRESTO, PSTATION, SPSQUARE, STRAFFIC, TCAR, and
TMETRO. The simulated sources are mixed with the noise
recordings to have an input SNR (iSNR) of -6, 0, 6, 12 and
18 dB for all channels combined. In the case of two targets,
the iSNR is measured between the sum of the target sources
and the noise recording. All signals are sampled at 16 kHz.

4.2. Algorithm parameters and evaluation criteria

The STFT window size is set to 1024 samples. The spectral
variances of the noise source are constrained to NMF with 16
components. The spatial covariance matrices of the speech
sources are initialized given knowledge of their position as
in [12, eq. 12]. The other parameters are randomly initial-
ized. Based on the convergence rates observed in initial ex-
periments, we use 100 iterations per channel for SSEM and 10
iterations (regardless of the number of channels) for BAEM.

Altogether, BAEM is more than two orders of magnitude
faster. In MATLAB, processing a single two-channel mixture
takes 25 min with SSEM in contrast to 7.5 s with BAEM.

Separation quality is evaluated in terms of the average
Signal-to-Interference Ratio (SIR) and Signal-to-Artifacts
Ratio (SAR) [3] over all environments, where the background
noise and the second source (if present) are both considered
as interfering sources.

4.3. Results

The separation results for a single target in noise and for two
targets in noise are shown in Figs. 3 and 4, respectively.
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Fig. 3. Average SIR and SAR for the separation of one target
in noise, as a function of iSNR with 2 channels (left) and of
the number of channels at an iSNR of 0 dB (right).

−6 0 6 12 18

0

5

10

15

20

av
er

ag
e 

S
IR

 a
n

d
 S

A
R

 (
d

B
)

iSNR (dB)

2 4 8

0

5

10

15

20

Channels

SSEM SIR

BAEM SIR

SSEM SAR

BAEM SAR

Fig. 4. Average SIR and SAR for the separation of two targets
in noise, as a function of iSNR with 2 channels (left) and of
the number of channels at an iSNR of 0 dB (right).

On two-channel mixtures, BAEM improves the SIR by 2
to 7 dB compared to SSEM when iSNR ≤ 0 dB. When the
iSNR increases, the SIR increases and remains almost always
superior to that of SSEM, while the SAR exhibits a stable,
lower value. This is expected for soft masking reconstruc-
tion, which often comes close to producing a binary mask on
the resulting signal. In such situtations, the SAR can be im-
proved at the expense of a comparable reduction in SIR by
temporal smoothing of the mask [15]. This post-processing
should allow BAEM to achieve a higher overall quality than
SSEM for iSNRs less than about 9 dB. Quality might further
be improved by using SSEM with few iterations as a post-
processing step for BAEM.

On mixtures of four or more channels, BAEM surpris-
ingly shows a decrease in performance as the number of chan-
nels is increased. This might be due to the apparently lower
robustness to noise of the updates (16) and (18) in BAEM
compared to the updates (10) and (12) in SSEM, which could
be addressed by appropriate regularization. Further study of
this behavior is needed, however, due to the complex inter-
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twining of all updates.
It is essential to note that this has no impact on the low-

iSNR real-world applications that motivated this study. In-
deed, applying BAEM to 2 channels out of the 8 available
provides both the fastest estimation and the best overall qual-
ity for these applications.

5. CONCLUSION

We proposed a new EM algorithm for the FASST source sep-
aration framework, which greatly reduces its computational
cost while retaining its ability of exploiting advanced source
models. Even with few channels, this reduction is about one
order of magnitude for each iteration whilst also requiring far
fewer iterations. In addition, the overall separation quality
of the proposed BAEM algorithm on two-channel mixtures is
larger than that of the traditional SSEM algorithm in the low-
iSNR real-world conditions that motivated this study. Further
work will be devoted to the examination of numerical robust-
ness issues, to temporal smoothing of the separation mask and
to the investigation of the use of SSEM as a post-processing
step for BAEM, so as to extend the observed quality improve-
ment to higher iSNR conditions and to more channels.
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