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ABSTRACT

We propose a novel variational Bayesian framework to per-
form simultaneous compressive sensing (CS) image recon-
struction and blind deconvolution (BID) as well as estimate
all modeling parameters. Furthermore, we show that the
proposed framework generalizes the alternating direction
method of multipliers which is often utilized to transform a
constrained optimization problem into an unconstrained one
through the use of the augmented Lagrangian. The proposed
framework can be easily adapted to other signal processing
applications or particular image and blur priors within the
proposed context. In this work, as an example, we employ
the following priors to illustrate the significance of the pro-
posed approach: (1) a non-convex lp quasi-norm based prior
for the image, (2) a simultaneous auto-regressive prior for
the blur, and (3) an l1 norm based prior for the transformed
coefficients. Experimental results using synthetic images
demonstrate the advantages of the proposed algorithm over
existing approaches.

Index Terms— Inverse methods, compressive sensing,
blind image deconvolution, parameter estimation, Bayesian
methods.

1. INTRODUCTION

Recently, the compressive BID problem has been introduced
[1–3]. The objective of this inverse problem is to estimate
both the image and blur from compressed measurements. The
acquisition model for the compressed lens-based measure-
ments in matrix-vector form is given by

y = ΦHx + n, (1)

where Φ corresponds to the M ×N CS measurement matrix
(M � N ), the N × N matrix H denotes the convolution
matrix resulting from the point spread function (PSF) of the

∗This work was supported in part by the Spanish Ministry of Economy
and Competitiveness under project TIN2010-15137, by the European Re-
gional Development Fund (FEDER) and by the CEI BioTic at the Universi-
dad de Granada.
†This work was supported in part by the Department of Energy under

contract DE-NA0000457.

lens, limited aperture dimensions, lack of focus, atmospheric
turbulences or combinations of the above, the N × 1 vector x
denotes the unknown image and theM×1 vector n represents
the measurement noise. The authors in [2] derived the lower
bound for the number of measurements needed to accurately
reconstruct a sparse vector x and proposed a reconstruction
algorithm that recovers simultaneously x and h for several
real-world acquisition systems (e.g., neuronal pulse streams
and astronomical imaging). One of the disadvantages of the
method in [2] is its inability to recover the unknown vectors
when pulses overlap.

In our earlier work, [3], we showed experimentally that a
blurred image (i.e., Hx) is compressible in various scenarios
and proposed a constrained optimization framework for com-
pressive BID. Compressible signals (see [4, 5]) can be well
approximated by a linear combination of K (K � N ) basis
vectors from the column space of a transformation matrix W
(i.e., Wa ≈ Hx), where the N × 1 vector a corresponds to
the sparse transformed coefficients of the blurred signal.

One deficiency of our earlier work, presented in [3], is the
assumption that the model parameters yielding best restora-
tion results are known a priori. However, in general, opti-
mal parameters depend on the observation noise, measure-
ment matrix, compressive ratio, blur, and the particular im-
age of interest, among other factors. In this paper we ex-
tend our framework from [3] by introducing a novel varia-
tional Bayesian CS BID algorithm for which all model pa-
rameters and unknown vectors are simultaneously inferred.
Furthermore, we show how to generalize the alternating di-
rection method of multipliers (ADMM, see [6] for details) to
include the estimation of the unknown regularization param-
eters through the use of the proposed framework.

This paper is organized as follows. We introduce a hi-
erarchical Bayesian framework and explain the basis of the
proposed approach in Section 2. The proposed variational
Bayesian CS BID algorithm is presented in Section 3 while
simulation results that support our approach are shown in Sec-
tion 4. Finally, conclusions are drawn in Section 5.

2. HIERARCHICAL BAYESIAN MODELING

The measurement noise is modeled as a zero mean white
Gaussian random vector. Therefore, the observation model is
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defined as,

p(y|β,a) ∝ βM2 exp

[
−β

2
‖y −ΦWa‖2

]
, (2)

where β is the precision of the multivariate Gaussian distribu-
tion.

In this work, similarly to [7], we utilize a variant of the
generalized Gaussian distribution (see [8] for more details)
for the image prior since the derivatives of blurry photographs
are expected to be sparse. More specifically,

p(x|α) ∝ αλ1
N
p exp

[
−α

∑
d∈D

21−o(d)
N∑
i=1

|∆d
i (x)|p

]
, (3)

where λ1 is a positive real number, D = {h, v, hh, vv, hv},
0 < p < 1 and o(d) ∈ {1, 2} denotes the order of the differ-
ence operator ∆d

i (x). ∆h
i (x) and ∆v

i (x) correspond, respec-
tively, to the horizontal and vertical first order differences, at
pixel i. That is, ∆h

i (x) = xi− xl(i) and ∆v
i (x) = xi− xa(i),

where l(i) and a(i) denote the nearest neighbors of i, to the
left and above, respectively. The operators ∆hh

i (x), ∆vv
i (x),

∆hv
i (x) correspond, respectively, to horizontal, vertical and

horizontal-vertical second order differences, at pixel i.
The blur is modeled by a simultaneous-autoregression,

p(h|γ) ∝ γ N2 exp
[
−γ

2
‖Ch‖2

]
, (4)

where C denotes the Laplacian operator. The transformed
coefficients a are modeled by a multivariate Laplace prior

p(a|τ) =
(τ

2

)N
exp [−τ‖a‖1] . (5)

Finally, for ω ∈ {α, β, γ, τ}, we use flat improper hyper-
priors such that,

p(ω) ∝ const. (6)

The joint distribution of all unknowns can be found by
combining (2), (3), (4), (5), and (6) as,

p(Θ,y) ∝ p(y|β,a)p(x|α)p(h|γ)p(a|τ), (7)

where Θ = {α, β, γ, τ,a,x,h}. Note that the model in (7)
does not include the dependency between the unknown vec-
tors (i.e., a, x, and h) shown in our previous work (see [3]).
In [3], we solve the constrained optimization problem

minimize
x,h,a

β

2
‖y −ΦWa‖2 + τ‖a‖1 + αR1(x) +

γ

2
R2(h)

subject to Hx = Wa, (8)

whereR1(x) andR2(h) are the regularization functionals as-
sociated with the proposed image and blur prior, respectively.
We can solve (8) by utilizing the ADMM (see [6]) which it-
eratively introduces scaled Lagrangian multipliers u at each
iteration k, such that, uk+1 = uk + (Wak+1 −Hk+1xk+1).

In order to include the modeling of the Lagrangian multipliers
in the proposed Bayesian framework, let us define the pseudo-
observation model

p(u|a,x,h) ∝ ηN2 exp
[
−η

2
‖Wa−Hx + u‖2

]
, (9)

where η is a known positive real number. Now, the joint dis-
tribution of all unknowns can finally be found by combining
(2), (3), (4), (5), (6) and (9) as,

p(Θ,y,u) ∝ p(y|β,a)p(u|a,x,h)p(x|α)p(h|γ)p(a|τ).
(10)

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION

Bayesian inference on the unknown components of the com-
pressive BID problem is based on the estimation of the un-
known posterior distribution p(Θ|y,u), given by

p(Θ|y,u) =
p(Θ,y,u)

p(y,u)
. (11)

Since the direct computation of p(Θ|y,u) is intractable
we resort to variational methods to approximate it by a
tractable distribution of the form

q(Θ) = q(α, β, γ, τ)q(a)q(x)q(h). (12)

The variational criterion used to find q(Θ) is the minimization
of the Kullback-Leibler (KL) divergence [9], given by

CKL (q(Θ) ‖ p(Θ|y,u)) =

∫
q(Θ) log

(
q(Θ)

p(Θ|y,u)

)
dΘ

=

∫
q(Θ) log

(
q(Θ)

p(Θ,y,u)

)
dΘ + const

=M (q(Θ)) + const, (13)

which is always non negative and equal to zero only when the
distributions q(Θ) and p(Θ|y,u) coincide.

Unfortunately, the KL divergence, defined in (13), cannot
be evaluated due to the form of the image prior. To overcome
this difficulty, we employ the majorization-minimization ap-
proach in [10,11] to find an upper bound of the KL divergence
which allows for analytical Bayesian inference. We start by
bounding the non-convex image prior p(x|α) (see [8] for de-
tailed derivation) as,

p(x|α) ≥ const · M(α,x,V), (14)

where V is a matrix with elements vd,i > 0 for d ∈
{h, v, hh, vv, hv}, i = 1, . . . , N and

M(α,x,V) =

αλ1
N
p exp

−αp
2

∑
d∈D

21−o(d)
∑
i

[∆d
i (x)]2 + 2−p

p vd,i

v
1− p2
d,i

 .
(15)
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The inequality in (14) leads to the following lower bound
for the joint probability distribution,

p(Θ,y,u) ≥ F(Θ,V,y,u), (16)

where

F(Θ,V,y,u) = const · p(y|β,a)p(u|a,x,h)

M(α,x,V)p(h|γ)p(a|τ). (17)

By defining the KL divergence between the distribution
q(Θ) and the bound F(Θ,V,y,u), that is,

M̃(q(Θ),V) =

∫
q(Θ) log

(
q(Θ)

F(Θ,V,y,u)

)
dΘ , (18)

and by utilizing inequality (16) we obtain

M(q(Θ)) ≤ min
V
M̃(q(Θ),V), (19)

where the upper bound in (19), with the addition of the un-
known variational matrix V, is mathematically tractable and
therefore can be used to calculate the posterior distribution
q(Θ) by minimizing (18).

The differentiation of (18) with respect to q(θ), with θ ∈
Θ, results to the posterior

q̂(θ) ∝ exp
[
〈log F(Θ,V,y,u)〉q(Θθ)

]
, (20)

where the set Θθ denotes the result of the set difference
Θ\{θ} and the operator 〈·〉q(Θθ) denotes the expected value
with respect to the distribution q(Θθ). For convenience, from
now on, wherever is obvious, the distribution used for the
calculation of the expected value will be dropped from the
notation (e.g., 〈a〉 denotes 〈a〉q(a)).

Next, we assume that the distributions q(x) and q(a) are
degenerate, that is, they take one value with probability one
and the rest of the values with probability zero, and that the
distributions q(α, β, γ, τ) and q(h) are not constrained to be
degenerate. In the experimental section we show that the de-
generate assumption for the image x and the transformed co-
efficients a is sufficient to outperform current state-of-the-art
methods. Now, let us propose the compressive BID algorithm
based on the variational Bayesian framework.

Algorithm. Given η, λ1 = 0.5, p = 0.8, x1,1 = Wa1,
u1 = 0∗a1, and initial estimates of the mean and covariance
for the blur posterior 〈h〉1,1 and Σ1,1

h = 0 ∗ I, respectively.
For k = 1, 2, . . . until a stopping criterion is met:

1. For l = 1, 2, . . . until a stopping criterion is met:

1.a) Calculate

〈α〉k,l =
λ1

N
p + 1∑

d∈D 21−o(d)
∑
i |∆d

i (x
k,l)|p

, (21)

〈γ〉k,l =
N + 2

〈‖ Ch ‖2〉qk,l(h)

. (22)

1.b) For each d ∈ {h, v, hh, vv, hv} calculate

vk,ld,i = [∆d
i (x

k,l)]2. (23)

1.c) Calculate

xk,l = argmin
x

{η
2
〈‖Wa−Hx + uk‖2〉qk,l(h)qk(a)+

〈α〉k,lp
2

∑
d∈D

21−o(d)
∑
i

[∆d
i (x)]2 + 2−p

p vd,i

v
1− p2
d,i

}
=

=
[
η(〈H〉k,l)t(〈H〉k,l) + ηNΣk,l

h

〈α〉k,lp
∑
d

21−o(d)(∆d)tBk,ld (∆d)
]−1

×

η(〈H〉k,l)t(W〈a〉k + uk), (24)

where ∆d is the convolution matrix of the difference
operator ∆d

i (·) and Bk,ld is a diagonal matrix with
entries Bk,ld (i, i) = (vk,ld,i)

p
2−1.

1.d) Calculate

〈h〉k,l+1 = argmin
h

{η
2
〈‖Wa−Hx + uk‖2〉qk,l(x)qk(a)+

〈γ〉k,l

2
‖Ch‖2

}
= ηΣk,l+1

h (Xk,l)t(W〈a〉k + uk),

(25)

where Σk,l+1
h =

[
η(Xk,l)t(Xk,l) + 〈γ〉k,lCtC

]−1

and Xk,l is the convolution matrix of the image xk,l.

2. Set xk+1,1 = xk = xk,l, 〈h〉k+1,1 = 〈h〉k = 〈h〉k,l+1,
Σk+1,1

h = Σk
h = Σk,l+1

h .

qk+1,1(x) = qk(x) =

{
1, for x = xk

0, otherwise
. (26)

qk+1,1(h) = qk(h) = N
(
〈h〉k,Σk

h

)
, (27)

where N (·, ·) is a Gaussian multivariate distribution.

3. Calculate
〈β〉k =

M + 2

〈‖ y −ΦWa ‖2〉k
, (28)

〈τ〉k =
N + 1

〈‖a‖1〉k
. (29)

4. Find

ak+1 = argmin
a

{ 〈β〉k
2
‖ y −ΦWa ‖2 +

+
η

2
〈‖Wa−Hx + uk ‖2〉qk(x)qk(h) + 〈τ〉k‖a‖1

}
.

(30)

5. Set

qk+1(a) =

{
1, for a = ak+1

0, otherwise
. (31)

6. Calculate

uk+1 = uk + (Wak+1 − 〈H〉kxk). (32)
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Note that, since (30) can be re-written as,

ak+1 = argmin
a

‖ y′ −Φ′Wa ‖2 +〈τ〉k‖a‖1, (33)

where y′ =

[√
〈β〉k

2 yt
[√

η
2 (〈H〉k〈x〉k − uk)

]t]t
and

Φ′ =

[√
〈β〉k

2 Φt
√

η
2 I

]t
, then when solving for the sparse

vector a, existing CS reconstruction algorithms (e.g., [12])
can be employed. Finally, as mentioned earlier, different im-
age and blur regularizers can be used in our framework. This
makes the proposed approach a versatile model for solving
compressive BID problems.

Let us point out another interesting fact about the pro-
posed algorithm. For simplicity’s sake, let us assume that the
hyperparameters (i.e., α, β, γ, and τ ) are known and that the
posterior distribution q(h) takes the degenerate form. Now,
by iteratively updating the pseudo-observation u as shown in
(32), our algorithm coincides with the ADMM (see [6]) which
can be utilized to solve (8). Therefore, the proposed algorithm
generalizes the ADMM by estimating the parameters of their
respective priors or regularization terms.

4. EXPERIMENTAL RESULTS

In this section we conduct a series of synthetic experiments
to support our CS BID approach. For comparison purposes
we use a set of state-of-the art algorithms, namely l1-ls [12],
GPSR [13] and NESTA [14] (for non-blind experiments) as
well as our earlier approach [3] (denoted as CSBD-S).

We use the “Cameraman”, “Lena”, and “Shepp-Logan”
images of size 256 × 256 pixels. All images are normal-
ized, degraded with a Gaussian PSF and Gaussian noise is
added to the CS measurements. As a performance metric, we
use the peak signal to noise ratio (PSNR) which is defined as
PSNR = 10 log10

NL2

‖x−x̂‖2 , where x and x̂ are the original and
estimated images, respectively, and the constant L represents
the maximum possible intensity value in image x. Further-
more, for all experiments, we use the 3-level Haar Wavelet
transform as our sparsifying basis W.

We perform two series of experiments for each image:
non-blind reconstructions/restorations when the blur h is as-
sumed to be known, and blind reconstructions/restorations
when the blur h is unknown and is being estimated.

In all compared algorithms, the parameters were opti-
mized up to a feasible extent, based on the suggestions of
the authors as well as testing a large set of different values
and the best obtained results are presented here. For the
non-blind experiments we, of course, skip step 1 .d) of the
proposed algorithm, since the blur is assumed to be known.
The algorithm is terminated when the convergence criterion
‖xk − xk−1‖/‖xk−1‖ < 10−3 is satisfied. Additionally, the
initial blur estimate h1,1 is set to a Gaussian of variance 2.

We conduct a series of experiments for compressive ra-
tios 0.1 to 1 with step 0.1 for all algorithms and the average
performance is reported. We test each algorithm under dif-
ferent blur degradations and noise realizations. Specifically,
we degrade each of the tested images with Gaussian PSFs of
variance 5 and 9 and add Gaussian noise to the CS measure-
ments so that the signal to noise ratio (SNR) becomes 40 dB
(additional cases were tested but are not presented here due
to space limitations). A performance comparison is presented
in Figure 1 which documents that our approach outperforms
the non-blind results of state-of-the art methods, as well as
the blind results of our previous framework, for the major-
ity of the tested scenarios. For the blind case, our algorithm
performs reasonably well, achieving PSNRs close to the non-
blind case, especially for the “Shepp-Logan” image.

Figure 2 depicts the tested images, their blurry degraded
versions with a Gaussian PSF of variance 5, and examples of
blind and non-blind reconstructions/restorations for different
CS ratios when SNR = 40 dB. The presented images corre-
spond to the highest achieved PSNR out of the tested cases
for each CS ratio. It is apparent that images of high visual
quality are obtained following the proposed framework.

5. CONCLUSIONS

In this paper, we proposed a novel variational Bayesian BID
framework for imaging systems based on the principles of CS
and provided simultaneous estimation rules for all modeling
parameters, the image, and the blur. Moreover, we demon-
strated how to adopt and generalize the alternating direction
method of multipliers, often utilized to solve constrained opti-
mization problems, within the variational Bayesian approach.
Finally, the proposed framework is general and can easily be
adapted to different BID approaches that utilize alternative
regularization terms for the image and blur. In the exper-
imental section we showed that the proposed approach has
advantages over existing CS algorithms.
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