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ABSTRACT
Frequency estimation for a single-tone complex exponential
signal is a classical and fundamental problem in many ap-
plications, such as communications, radar, and power. Most
DFT-based frequency estimators reported in the literature ex-
hibit an error floor at high SNR, due to their use of approx-
imations to nonlinear equations. This effect is pronounced
for short observation windows. In this paper, we propose two
simple nonlinear equation solvers for eliminating this error
floor. Simulations confirm the effectiveness of this proposed
approach. We add to the literature of DFT-based estimators
by proposing a frequency estimator for the case where a mea-
sured sequence is zero-padded by a factor of two.

1. INTRODUCTION

Frequency estimation for sinusoidal signals is used in many
applications, such as communications, radar, sonar, and
power. The mean-squared error of low-complexity DFT-
based frequency estimators [1–9] essentially tracks the Cramer-
Rao lower bound for unbiased estimators, at SNRs above
threshold, until they reach an error floor at high SNR. This
error floor is the bias-squared attributable to the approximate
solution of a nonlinear equation. In this paper we propose
two simple nonlinear equation solvers to eliminate this error
floor.

DFT-based frequency estimators are usually carried out in
two steps. In the first step, a coarse estimate of the frequency
is obtained by locating the DFT sample with the maximum
magnitude. In the second step, the difference between the
coarse estimate and the true frequency is estimated from DFT
samples in the neighborhood of the maximum-magnitude
sample.

Existing DFT-based estimators all share the same coarse
estimate in their first step. Their differences lie in their esti-
mates of a frequency difference in step two [1–9]. In order
to estimate the frequency difference, a sequence of insightful
approximations is used to estimate this difference as a non-
linear function of DFT samples in the neighborhood of the

This work is in part supported by National Science Foundation un-
der grant ECCS-1232305 and Department of Energy under project DE-
OE0000657.

maximum-magnitude sample. As shown in [9], these estima-
tors are biased at high SNR. As a result, they exhibit an error
floor at high SNR. To eliminate the error floor, a sequence of
time-domain iterations is introduced in [10]. The method re-
ported in this paper may be considered a frequency-domain
alternative to the method of [10]. Its virtue is that it may be
used to eliminate the error floor in all of the DFT-based meth-
ods reported to date, at low computational complexity.

Each of the methods reported in [1–9] relies on a formula
for the difference between a noise-free coarse estimate and
the true frequency. This formula is then approximated. We
propose to refine the approximations and their solutions by a
simple search for the solution to a nonlinear regression equa-
tion, using a numerical method such as Newton-Raphson or
Secant. Simulations show that this approach eliminates the
error floor at high SNR.

The rest of this paper is organized as follows: The prob-
lem is formulated in Section 2 and existing work is briefly re-
viewed in Section 3. Our proposed error floor elimination is
formulated as a search problem and solved by two numerical
algorithms in Section 4. Simulations are presented in Sec-
tion 5 to demonstrate performance, with concluding remarks
given in Section 6.

2. PROBLEM FORMULATION

A discrete-time single-tone complex exponential signal can
be written as

x[n] = Ae

j(2⇡ f
fs

n+�)
+ w[n] ,�f

s

/2 < f  f

s

/2 ,

where f is the signal frequency to be estimated, f
s

is the sam-
pling frequency, A and � are the unknown magnitude and
initial phase respectively, and w[n] is the additive complex
noise. In our simulations the noise is taken to be white Gaus-
sian with per sample variance �

2. Then, we can define the
signal to noise ratio (SNR) as � =

A

2

�

2 .
The maximum likelihood (ML) estimator searches for the

location of the peak in the discrete-time Fourier transform
(DTFT) of the signal [3, 11], which takes a sinc shape cen-
tered at f as shown in Fig. 1. However, the discrete Fourier
transform (DFT) is utilized in practice, to resolve the DTFT
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Fig. 1. DTFT (dash line) and M -point DFT of an N -point single-
tone signal x(t) = Ae

j(2⇡ft+�) with sampling frequency fs.

at resolution fs

M

, where M is the zero-padded DFT size. The
M -point (M � N) DFT of x[n] is given by

X[k] =

N�1X

n=0

Ae

j�

e

j2⇡ f
fs

n

e

�j

2⇡
M nk

+W [k] (1)

= Ae

j�

e

j⇡(N�1)
(

f
fs

� k
M )

sin

⇣
⇡N

⇣
f

fs
� k

M

⌘⌘

sin

⇣
⇡

⇣
f

fs
� k

M

⌘⌘
+W [k].

(2)

where the W [k]’s are DFT coefficients of the noise w[n].
When f is not an integer multiple of f

s

/M , the DFT does
not capture the peak of the DTFT even when noise is absent,
as depicted in Fig. 1. However, at high SNR the DFT sam-
ple with the maximum magnitude is close to the peak, with
high probability, and hence can be used as a coarse estimate.
Therefore, the true frequency f can be parameterized in terms
of the DFT frequency spacing f

s

/M as follows:

f = (k

m

+ �)

f

s

M

, (3)

where k

m

is the index of the DFT sample with the maximum
magnitude, and � 2 [�0.5, 0.5] is an interpolation parame-
ter. Clearly this parameterization of f will fail at SNRs below
a threshold, but for SNRs above this threshold, where k

m

fs

M

is, with high probability, within 1
2
fs

M

of f , this parameteriza-
tion is expected to effectively interpolate between the coarse
frequency estimate of the DFT.

3. EXISTING WORK

In the literature, a two-step frequency estimation approach
based on (3) is commonly employed:

1. Take an M -point DFT of the N -point signal, search
for the DFT sample with the maximum magnitude, and
denote its index as k

m

.

2. Estimate the interpolation parameter � using the maxi-
mum DFT sample and its neighbors.

Following this approach, the estimators of [3–6, 8, 9] are
briefly summarized in the following subsections.

3.1. Quinn’s Estimators [3, 4]

In [3], the fractional frequency deviation � is estimated by
interpolating X[k

m

+1], X[k

m

] and X[k

m

�1], based on the
approximation e

j2⇡
⇣

f
fs

� k
N

⌘

�1 ⇡ j2⇡
⇣

f
fs

� k
N

⌘
, based on the

assumption that the observation window size N is large.
With the approximation, the relationship between � and

these three samples can be derived from (2) and (3) as follows:

X[k

m

+ i]

X[k

m

]

⇡ �

� � i

+

W [k

m

+ i]

NC

� �

� � i

W [k

m

]

NC

, (4)

where C = Ae

j�

(e

j2⇡��1)/(j2⇡�) and i 2 {�1, 1}. Ne-
glecting the noise parts in (4) for N is large, two estimates
can be obtained as follows:

ˆ

�±1 =

↵±1

1� ↵±1
, where ↵±1 = Re

⇢
X[k

m

± 1]

X[k

m

]

�
.

Quinn then proposed a criterion to select the final frequency
estimate between �+1 and ��1 as:

ˆ

� =

⇢
ˆ

�+1
ˆ

�+1 > 0 and ˆ

��1 > 0 ,

ˆ

��1 Otherwise .

which choice leads to the one with smaller asymptotic vari-
ance.

In [4], by forcing the asymptotic variance to the Cramer-
Rao lower bound (CRLB), Quinn proposed a new estimator
incorporating both �+1 and ��1 as follows:

ˆ

� =

(

ˆ

�+1 +
ˆ

��1)

2

+ k(

ˆ

�+1)� k(

ˆ

��1) ,

where k(x) =

1
4 log(3x

4
+ 6x

2
+ 1)�

p
6

24 log

✓
x

2+1�
p

2
3

x

2+1+
p

2
3

◆
.

3.2. Macleod’s Estimator [5]

Two approximations, N�1
N

⇡ 1 and sin

�
⇡

N

(� � i)

�
⇡ ⇡

N

(� �
i) , i={0,±1}, were made for large N . With these approxi-
mations, the noiseless X[k

m

+i] could be expressed as follows
by substituting (3) into (2):

X[k

m

+ i] = Ae

j(�+⇡�)N sin(⇡�)

⇡(� � i)

. (5)

Out of a number of low-complexity numerator and denom-
inator combinations of X[k

m

], X[k

m

+ 1] and X[k

m

� 1],
Macleod selected the following:

2
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d =

Re {R(�1)�R(1)}
Re {2R(0) +R(�1) +R(1)} ,

where R(i) = X[k

m

+ i]X

⇤
[k

m

]. From (5), d =

��

2�2�1 .
Accordingly, the estimate of � could be easily obtained by
solving the quadratic equation 2d�

2
+��d = 0 which results

in
ˆ

� =

p
1 + 8d

2 � 1

4d

.

3.3. Jacobsen’s [6] and Candan’s [8] Estimators

The estimator proposed by Jacobsen in [6] also utilized the
N -point DFT and was based on empirical observations as fol-
lows,

ˆ

� = Re

⇢
X[k

m

�1]�X[k

m

+1]

2X[k

m

]�X[k

m

�1]�X[k

m

+1]

�
. (6)

In [8], Candan analyzed this estimator by Taylor series expan-
sion on the expressions of X[k

m

], X[k

m

+1] and X[k

m

�1].
The estimator in (6) is related to the true � as:

Re

⇢
X[k

m

�1]�X[k

m

+1]

2X[k

m

]�X[k

m

�1]�X[k

m

+1]

�
=

⇡ cot(⇡/N)

N(1+⇡

2
�

2
)

� .

By neglecting ⇡

2
�

2 in the denominator on the right hand side
of the above equation since �

2 is small, a new estimator can
be obtained as:

ˆ

�=

tan (⇡/N)

⇡/N

Re

⇢
X[k

m

�1]�X[k

m

+1]

2X[k

m

]�X[k

m

�1]�X[k

m

+1]

�
.

(7)
Candan’s estimator is an improved version of Jacobsen’s with
a bias-correction term tan (⇡/N)

⇡/N

. However, it is still biased
due to the approximations in the estimator development.

3.4. Special Sized DFT-Based Estimator [9]

Reference [9] reports an estimator based on the DFT with spe-
cial zero-padding size M = 2N , which gives rise to this rela-
tionship between � and X[k

m

± 1]:

tan

⇣
⇡

2N

�

⌘
= tan

⇣
⇡

2N

⌘
⇢� 1

⇢+ 1

. (8)

Here ⇢ = |X[k

m

+ 1]|/|X[k

m

� 1]|. The approximation
tan(

⇡

2N �) ⇡ ⇡

2N �, produces an estimate,

ˆ

� =

2N

⇡

· tan
⇣

⇡

2N

⌘
⇢� 1

⇢+ 1

. (9)

3.5. Summary and Preview of Error Floor Elimination

In summary, all aforementioned estimators involve approx-
imations, and as a consequence they exhibit error floors at
high SNR. The accuracy of the approximations depends on
the value of N , and as a result, error floors are higher at small
values of N than at large values. But, importantly, at high
SNR (really, noise-free) each of these estimators is invariant
to amplitude A and phase �. So our methodology will be to
treat each of the estimators as a statistic, to which the signal
component of (2) is to be fitted, with f parameterized as in
(3).

4. ERROR FLOOR ELIMINATION

We propose an error floor elimination scheme to improve the
high-SNR performance of existing estimators. We will start
with the special sized DFT-based estimator in [9] and then
generalize the proposed scheme to other estimators.

From (8), we see that the problem is to solve a nonlinear
regression equation g(�) � G(X) = 0 for �, where g(�) =

tan

�
⇡

2N �

�
, G(X) = tan

�
⇡

2N

�
⇢�1
⇢+1 , and X denotes DFT

samples. A numerical search algorithm may be applied, using
the approximation ˆ

� to initialize the search.
Therefore, the error floor elimination algorithm based on

the Newton-Raphson method (EFE-Newton) is summarized
as follows:

Algorithm [EFE]:

1. Determine the regression equation g(�)�G(X) = 0.

2. Determine a good starting value for �, typically the
value proposed by the authors of the cited papers.

3. Run a numerical search, such as Newton or Secant, for
the solution to the regression equation.

4. Reconstruct the frequency based on (3), using the value
of � returned by the numerical search.

This procedure may be used to eliminate the error floor
for other DFT-based estimators, such as those reported in [3–
6, 8]. The key is to treat a proposed frequency estimator as a
statistic G(X), compute its noise-free value g(�) by replacing
the X[k]’s in the estimator with their noise-free values, form
the regression equation g(�) � G(X) = 0, choose a good
starting value for � (namely, the proposed estimator ˆ

�), and
run a search for the refined interpolation parameter �. That is,
the function g(�) is obtained by substituting (3) into (2) and
expressing the noiseless DFT samples of interest as

X[k

m

+ i]=Ae

j�

e

j⇡

N�1
M (��i) sin

�
⇡N

M

(� � i)

�

sin

�
⇡

M

(� � i)

� (10)

where i = {�1, 0, 1}. Accordingly, g(�) for each estimator
is obtained by substituting (10) into an estimator expression,
such as (6), (7) and so on. As noted previously, g(�) in each
case only contains the unknown �, since the other two un-
known parameters in (10), amplitude A and phase angle �, are
eliminated in the expressions of the original estimators. That
is, their noise-free versions are invariant to A and �. Hence,
the error floor elimination of all existing estimators can be
framed as the root search problem on g(�) � G(X) = 0,
where g(�) and G(X) are determined by the specific DFT-
based algorithm.

However, sometimes the function g(�) is too compli-
cated and the closed-form expression for the derivative is
unavailable, such as for the estimator developed in [3]. In
this case, the Newton-Raphson method cannot be directly
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Fig. 2. Noiseless absolute bias comparisons between EFE-
Newton and EFE-Secant on Candan11 with different iteration
number. The true frequency f = 55 Hz.

applied. Then the Secant method [12] can be used to replace
the derivative g

0
(·) by a finite difference as:

g

0
(

ˆ

�

i

) ⇡ g(

ˆ

�

i

)�g(

ˆ

�

i�1)

ˆ

�

i

�ˆ

�

i�1

. (11)

where subscript i denotes iteration index here.

5. SIMULATIONS

In this section, we first verify the effectiveness of EFE-
Newton and EFE-Secant algorithms in terms of the absolute
noiseless frequency error | ˆf � f |, and then compare the
existing estimators in their original and refined versions in
terms of mean-squared error, estimated from Monte-Carlo
experiments. In all simulations, the observation window size
is N = 8, the sampling frequency is f

s

= 200 Hz, and the
unknown frequency f lies within the Nyquist band. Of course
only the ratio f

fs
matters.

Fig. 2 shows the absolute noiseless bias of Candan’s fre-
quency estimator [8] refined by EFE-Newton and EFE-Secant
with various iteration numbers. Clearly, the absolute noise-
less bias can be treated as zero when the iteration number is
greater than 3 for both EFE-Newton and EFE-Secant. In ad-
dition, the Newton-Raphson method converges slightly faster
than the Secant method, for the Secant method is based on the
approximation of the Newton method.

For fair comparisons, we adopt the EFE-Secant to elim-
inate the error floor of the estimators for all the remaining
simulations with 3 iterations. Here, we use �

N to denote
the interpolation parameter for estimators taking an N -point
DFT, and �

2N to denote this parameter when taking a 2N -
point DFT, as �’s for different DFT sizes will differ. In ad-
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(b) Enhanced Estimators

Fig. 3. RMSE performance of interpolation algorithms when
the true frequency f = 56.25 Hz, where �

2N
= ±0.5, �N

=

0.25.

dition, we also compare our method with the time-domain
iterative (TD-Iterative) method proposed in [10], which itera-
tively adjusts the original time-domain signal and computes a
new DFT samples at each iteration.

Fig. 3 shows the results when f = 56.25 Hz, where
�

N

= 0.25 and �

2N
= ±0.5. Fig. 4 shows the results,

when f = 52.5 Hz, where �

N

= 0.1 and �

2N
= 0.2. The

Cramer-Rao lower bound (CRLB) is calculated numerically
according to the expressions given in [5]. Compared with the
original estimators, the refined estimators eliminate the error
floor and approach the CRLB at high SNR, which confirms
the effectiveness of our proposed scheme. Furthermore, the
performance of refined estimators is not impaired at medium
SNR. As a tradeoff, the performance of the refined estimators
is very slightly compromised at very low SNR. However, in
this SNR range, frequency estimators are already far off the
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Fig. 4. RMSE performance of interpolation algorithms when
the true frequency f = 52.5 Hz, where �

2N
= 0.2, �N

= 0.1.

CRLB and the minor performance loss is insignificant. In Fig.
3(b), the TD-Iterative estimator [10] has a slight performance
gain over the refined estimators, when f = 56.25 Hz. How-
ever, this gain disappears for f = 52.5 Hz in Fig. 4(b). These
results seem to indicate that the refined version of the esti-
mator reported in [9] slightly outperforms other refined DFT-
based estimators, and has roughly the same performance as
the TD-Iterative method of [10], at lower computational com-
plexity.

6. CONCLUSIONS

In this paper, we have reviewed several DFT-based estimators
that have been reported in the literature. Each of them ex-
hibits an error floor at high SNR, due to the bias introduced
by approximations. By determining a regression equation that
governs the nonlinear dependence of a frequency difference

on a nonlinear function of DFT samples, we have developed a
methodology for eliminating this error floor. Simulations con-
firm that the proposed methodology removes the error floor of
all of the estimators we have studied, so that estimators track
the Cramer-Rao lower bound at high SNR.
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