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ABSTRACT

The rational function systems proved to be useful in several

areas including system and control theories and signal pro-

cessing. In this paper, we present an extension of the well-

known particle swarm optimization (PSO) method based on

the hyperbolic geometry. We applied this method on digital

signals to determine the optimal parameters of the rational

function systems. Our goal is to minimize the error between

the approximation and the original signal while the poles of

the system remain stable. Namely, we show that the presented

algorithm is suitable to localize the same poles by using dif-

ferent initial conditions.

Index Terms— Rational functions, Malmquist–Takenaka

system, Hyperbolic geometry, Particle swarm optimization.

1. INTRODUCTION

Rational function systems have a wide range of applications.

For instance in system, control theories they play an im-

portant role in the representation of the transfer function, see

e.g. [1], [2]. Furthermore, rational functions like the Blaschke

functions and the orthonormal Malmquist–Takenaka (MT) or

the biorthogonal systems [3] are effectively used for approx-

imating signals especially electrocardiograms [4], [5]. In

our former work, a general MATLAB library, called RAIT

[6], has been implemented for manipulating different types

of rational functions systems. We also built in methods for

finding the best parameters of a good approximation auto-

matically [7]. Generally speaking, the following parameters

should be determined: the number, the positions and the mul-

tiplicities of the poles. The deterministic optimization search

technique, Nelder–Mead simplex algorithm [8] was applied

for this purpose. Although it produced good pole configu-

rations, it turned out to be unstable. In other words it was

sensitive to the initial conditions, i.e. the starting points of
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the simplex. As a result, running the algorithm more times

on the same problem may result in different poles. This issue

is well-known in the optimization theory, which is caused by

being trapped in a local maxima or minima. In this work we

will show that the particle swarm optimization (PSO) method

is more appropriate for this problem.

The outline of this article is as follows. In Section 2 we

summarize our former works considering the rational func-

tion approximations by using different types of systems. Sec-

tion 3 contains the proposed hyperbolic extension of the PSO

algorithm. Section 4 presents an application of the method

on ECG signals. Section 5 is a summary of conclusions and

future plans.

2. RELATED WORKS

In this section we outline the mathematical concepts behind

our algorithms.

Let C stand for the set of complex numbers, D :=
{ z ∈ C : |z| < 1 } for the open unit disc, N := { 1, 2, 3, . . . }
for the set of natural numbers, and T := { z ∈ C : |z| = 1 }
for the unit circle (or torus).

The basic rational functions are defined as follows

ra,k(z) =
1

(1− az)k
, (a ∈ D, k ∈ N) . (1)

The parameter a is referred to as inverse pole (because 1/a is

a pole in the standard sense), k is said to be the order of the

basic function. Using a terminology similar to the trigono-

metric case, the value k = 1 corresponds to the fundamental
tone and k > 1 the overtones.

The basic rational functions form a linearly indepen-

dent but not orthogonal set of functions. The corresponding

orthonormal systems called Malmquist–Takenaka (MT) sys-

tems are generated by Gram–Schmidt orthogonalization to

basic rational functions. The scalar product used on T is:

〈F,G〉 = 1

2π

∫ π

−π

F (eit)G(eit) dt (F,G ∈ H2(D)) . (2)

Naturally we use the uniformly sampled discrete approxima-

tion of this integral in our calculations.
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A handy property of the MT systems is that their elements

can be expressed as Blaschke products. Namely, taking the

basic functions for a given n ∈ N and a1, . . . , an ∈ D the

orthogonalized MT system can be written as:

Φk(z) =

√
1− |ak|2
1− akz

k−1∏
j=1

Baj
(z) , (3)

with 1 ≤ k ≤ n , where

Bak
(z) :=

z − ak
1− akz

(z ∈ C \ { 1/ak }) . (4)

Usually we take the restriction of the functions on the unit

circle, which we identify with the [−π, π) real interval, in our

algorithm. To this order we apply the map t �→ eit ∈ T.

Then the real part and the imaginary part can both be used

for signal processing purposes. More precisely, any signal

f can be approximated by taking the real part of the linear

combinations of the Φk functions.

This method was successfully applied for representing

ECG signals [5]. Furthermore, we used the basic rational

functions to model the QRS complex of the electrocardio-

grams [4]. We note that this process is highly adaptive, in

contrast with other types of orthogonal systems, for instance

the trigonometric functions [9]. Additionally, other types of

rational functions were also developed such as the biorthogo-

nal systems [3] to improve the localization property in time.

If the poles and multiplicities are given then the MT

system is determined. Let us consider the different poles

a1, . . . , an ∈ D and their related multiplicities m1, . . . ,mn ∈
N. In this case the approximation has m := m1+m2+ · · ·+
mn number of ck coefficients. In our former work [6], a

priory information was used to predict the number and the

multiplicities of the poles. For instance, in the case of an ECG

curve, the number of diagnostic (P,QRS,T) waves were used

as an estimation of the number of the poles. Furthermore,

the lobes P and T are less significant than the QRS complex

which makes it evident to use the [1, 1, 2] vector respectively

for their multiplicities.

Now, our aim is to construct an MT system by using

the best parameters to minimize the approximation error. To

achieve this goal we perform the following steps:

• define appropriate operators for vector scalar multipli-

cation, and vector addition in the Poincaré model;
• extend the basic PSO algorithm for localizing the best

position of a single pole by using hyperbolic geometry;

• extend the hyperbolic single pole PSO to solve multi-

pole problems as well.

3. HYPERBOLIC PSO ALGORITHM

The PSO algorithm was introduced by Eberhart and Kennedy

[10] as a population based stochastic optimization technique.

The method was inspired by the social behavior of bird

flocking or fish schooling. The algorithm works similar to

a swarm, which is flying through the (problem) space while

they are looking for an optimal point (e.g. food). During the

search process the swarm is navigated by the closest parti-

cle to the optima. The method is initialized with a random

population where each individual has a solution for the given

problem. In this sense, it shows similarities to the Evolu-

tionary Algorithms (EAs) such as Genetic Algorithm (GA).

Generally, it can also be considered as a special case of the

Monte Carlo simulation where the random population is led

by certain points at each iteration.

Namely, each individual keeps track of its position in an

n dimensional search space related to the personal best solu-

tion so far achieved. Using this terminology the global best

coordinates of the swarm can be determined in a similar way.

These properties along with the velocities vk and the positions

xk of the kth individual will be updated in the ith iteration by

using the following equations:

vk(i+ 1) =w(i) · vk(i) + c1r1(i) · (yk(i)− xk(i))

+ c2r2(i) · (ŷk(i)− xk(i)) , (5)

xk(i) =xk(i) + vk(i) ,

where

• yk(i) ∈ R
n is the personal best position of the kth par-

ticle at the ith iteration,
• ŷk(i) ∈ R

n is the global best position of the kth particle

at the ith iteration,
• c1, c2 are the learning factors, usually set as, c1 = c2 =

2,
• w(i) is the inertia weight which is linearly decreased

from 0.8 to 0.2 ,
• r1(i), r2(i) ∈ (0, 1) are uniformly distributed random

numbers.

If we do not permit arbitrary large jumps in the search

space then it is possible to restrict the velocities and the

positions to a certain interval defined by the variables,

Vmax, Xmin, Xmax. More details can be found in [11].

For the sake of simplicity we are considering the two di-

mensional case at first, where we need to find only one com-

plex pole while its multiplicity is fixed. So, the remaining

task is to find the position of this single pole for an MT sys-

tem which minimizes the error of the approximation. As we

know from Section 2 the poles of a rational function system

should lie within the unit circle. This implies the idea to use

the Poincaré model on D of the hyperbolic geometry. In this

case, the search space should be the open unit disc, and the

particles are containing two coordinates related to the real and

imaginary part of the pole. Namely, the algorithm will be re-

turned with a1 := xk,1 + ixk,2 .
If we want to apply the basic PSO algorithm with the

Poincaré model then the + and · operators in Eq. (5) should

be replaced by hyperbolic multiplication and addition.
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3.1. Hyperbolic multiplication

Using the terminology of the Euclidian geometry the vector

scalar multiplication of the hyperbolic space can be defined in

a similar way. Namely, it means scaling of a hyperbolic vector

by keeping its direction. In this case, the geodesics of this

space are represented by arcs of circles that are orthogonal to

the torus. Furthermore, it can be shown that the hyperbolic

segments can be defined by using the Blaschke functions.

Let us denote the Blaschke transformation εBa(t) by

Ba(t) where a := (a, ε) ∈ D × T. Then the function Ba(t)
maps the interval [0, p] onto the segment connecting w1, and

w2, where

p = |Bw1
(w2)| , ε =

Bw1
(w2)

|Bw1
(w2)| , a = −ε̄w1 . (6)

Now the hyperbolic vector −−−→w1w2 can be defined as a directed

segment with Ba(0) = w1 and Ba(p) = w2. For the scaling

of these vectors we will use the so-called pseudo-hyperbolic

metric on D :

ρ0(z1, z2) :=
|z1 − z2|
|1− z1z2| = |Bz1(z2)| (z1, z2 ∈ D) . (7)

Then the hyperbolic metric is as follows:

ρ(z1, z2) := arth(ρ0(z1, z2)) (z1, z2 ∈ D) . (8)

(D, ρ) is a complete metric space invariant with respect to the

Blaschke transforms, i.e. for any a ∈ D× T and z1, z2 ∈ D ,

ρ(Ba(z1),Ba(z2)) = ρ(z1, z2) . (9)

Let us denote the hyperbolic vector scalar multiplication by

�. Then the expression λ�−−−→w1w2 means the scaling of −−−→w1w2

by the factor λ ∈ R . We should calculate the new endpoint

wλ on the geodesic connecting w1 and w2 that satisfies the

following equation

ρ(w1, wλ) = λρ(w1, w2) . (10)

By using the parameters of Eq. (6) for the segment −−−→w1w2 and

the invariant property of the Blaschke transform from Eq. (9)

this can be written as,

arth(sλ) = ρ(0, sλ) = λρ(0, p) = λ arth(p) , (11)

where wλ = Ba(sλ). Hence

sλ = th(λ arth(p)) . (12)

In summary, the expression −−−→w1wλ = λ � −−−→w1w2 can be eval-

uated by using the equations (6), (12), and wλ = Ba(sλ).
Fig. 1(a) shows this procedure. The dashed blue lines repre-

sent the original vectors while the scaled ones are marked by

red color. Furthermore, the pseudocode of this algorithm is as

follows.

Algorithm 1 hyperbolic multiplication �
function HYP MUL(λ,w1,w2)

if w1 = w2 then
sλ := 0
wλ := w1

else
p := |Bw1(w2)|
ε := Bw1(w2)/ |Bw1(w2)|
a := −εw1

sλ := th(λ arth(p))
wλ := εBa(sλ)

end if
return wλ

end function

3.2. Hyperbolic addition

According to the previous section the natural approach for

defining hyperbolic addition would be a proper interpreta-

tion of the parallelogram rule. In this sense the difference

of two vectors −−−→w0w1 and −−−→w0w2 will be the diagonal that con-

nects the endpoints. The other diagonal represents the sum

of these vectors. The hyperbolic parallelogram can be easily

constructed by reflecting the initial point w0 with respect to

the bisection of the segment w1w2. Additionally, the required

construction of hyperbolic bisectors and reflections can be

found in [4].

Unfortunately, the parallelogram method cannot be used

since the difference of two vectors −−−→w0w1 − −−−→w0w2 is usu-

ally not equal with the addition in opposite direction −−−→w0w1 +
(−−−−→w0w2). One can see an example on Fig. 1(b). Here, z1
denotes the reflection of w2 onto w0. Then the difference of

the vectors were constructed as −−→w0z2 = −−−→w0w1 + −−→w0z1. As

we mentioned that, it is not equal to the vector −−−→w2w1. For in-

stance, their magnitudes on Fig. 1(b) are 0.92 and 0.46 with

respect to the hyperbolic metric in Eq. (8). The reason behind

this phenomena is that the similarity and the congruency are

equivalent definitions in the hyperbolic space. For instance,

two triangles are similar or congruent only if their angles are

equal. It means that scaling an object without distortion is not

possible in the hyperbolic space. In other words the hyper-

bolic geometry has an absolute unit of length.

The proper definition of hyperbolic addition realizes on

compositions of Blaschke functions. It can be shown that

the set of Blaschke transforms B = {Ba : a ∈ D× T} is

closed for the composition operator ◦: Ba1
◦ Ba2

= Ba .
If a1 = (w1, 1) and a2 = (w2, 1) then a = (w, 1) where

w =
w1 + w2

1 + w1w2
. This is the well-known Möbius transfor-

mation which maps the unit disc onto itself. This can be

interpreted as a vector addition in the hyperbolic space for

vectors with initial point at zero. We denote this operator by

⊕ : (
−−→
0w1,

−−→
0w2) �−→ −→

0w. For details on these transformations

we refer to [9].
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(a) Hyperbolic scaling.
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(b) Hyperbolic addition.

Fig. 1. Hyperbolic operators.

3.3. Hyperbolic PSO with multiple poles

In the last section, the hyperbolic PSO (HPSO) algorithm was

defined by replacing the operators +, · in Eq. (5) with ⊕,�.
However, we considered only the problem of single pole op-

timization in the Poincaré disc model, it is easy to extend it

into higher dimensions. Let’s denote the sequence of different

poles by a = a1, . . . , an. Then the optimization problem for

a given f function or signal can be written as

argmin
a

‖f − Sm
a f‖2 , (13)

where Saf is the MT series expansion of f

Sm
a f =

m−1∑
k=0

〈f,Φk〉Φk . (14)

Describing rigid movements of the hyperbolic space is a hard

task in high (> 3) dimensions. So, our geometrical approach

cannot be applied directly to extend the HPSO algorithm on

multi-pole problems. By this reason we perform the optimiza-

tion separately on each pole. It means that we should replace

Eq. (13) by

argmin
ai

‖f − Sm
a f‖2 (i = 1, . . . , n) . (15)

The original multi-pole problem was separated into single

pole optimizations. So, the two dimensional HPSO method

can be applied successively. However, the equation should be

evaluated n times, it represents only one step of the algorithm.

In addition, one can proceed with the optimization by iterat-

ing Eq. (15) over every poles sequentially until a condition is

not satisfied. For instance, the algorithm can be terminated

when a certain level of approximation error is achieved or the

locations of the poles are not changed enough between the

last iterations.

We note that, the particles cannot leave the unit circle

during the algorithm. It is coming naturally from our model

which makes the search space boundaries, Xmin, Xmax un-

necessary. However, a maximal velocity can be also defined

by measuring the distance of the movements using Eq. (8).

4. EXPERIMENTAL RESULTS

In this section, we perform some experiments on the hyper-

bolic PSO algorithm to test its efficiency with various aspects.

Our goal is to compare this method with an other optimization

technique the well-known Nelder–Mead algorithm. It was

used in our former work [6] to find the best poles of the sys-

tem. However, recall that these poles were strongly dependent

on the initial conditions. We tested the stability of the poles

and the approximation error in the case of using Nelder–Mead

and HPSO algorithms.

In the first experiment, we generated 400 signals with ran-

dom poles and coefficients. Then both algorithms were run

100 times on each synthesized signal. One can see an exam-

ple on Fig. 2(a) and Fig. 2(b) which show the resulted poles

on the same record. The original ones are marked by black

squares. Moreover, Fig. 2(c) displays the average error of ev-

ery 100 run on each signal. One can see that the stability of

the poles is about two times better in the case of the HPSO

algorithm.

In the second experiment we tested the approximation

error of both optimization method. For this purpose, we used

the MIT-BIH Arrhythmia Database from PhysioNet [12].

Namely, the first 3 minute of each ECG record was segmented

into heart beats. Then these beats were approximated by us-

ing HPSO and Nelder-Mead algorithms (overall run> 9000).

Based on our former research on electrocardiographs [5] we

chose 3 poles with multiplicities m1 = m2 = 2,m3 = 4.

Fig. 2(d) shows the average error of each ECG record where

the approximation error was measured by using the percent-

age root mean square difference (PRD):

PRD =

√√√√∑N
n=1(x(n)− x̃(n))2∑N
n=1(x(n)− x)2

× 100 , (16)

where x is the signal mean, x(n), x̃(n) denote the synthesized

and the reconstructed signals and N is the number of samples.

However, the HPSO is slightly better than the Nelder-Mead

algorithm, but the difference is not significant. On the other

hand, it means that the poles that was found by our method

are more stable while the approximation keeps its accuracy.

By taking advantage of this property it is possible to use the

poles as a feature, for instance in ECG beat classification.

5. CONCLUSIONS

We have extended the basic PSO algorithm to hyperbolic

spaces by using the Poincaré disc model. The particles of this

method move inside the unit circle, which does not require

additional conditions like Xmin and Xmax. The algorithm

is adequate to construct good approximations with high pole

stability. Furthermore, we showed that it outperforms the

Nelder–Mead algorithm in every sense, except for the exe-

cution time which was about 10 times slower. It is a conse-

quence of evaluating the approximation on a large population
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Fig. 2. Experimental results on synthetic and real datas.

(> 20), but this can be improved by using parallel implemen-

tations. A number of applications and simple extensions of

the model are possible.

• The algorithm can be extended to any type of simply

connected region by using the conformal mappings.
• Further research is required to apply methods to avoid

premature convergence such as the fractional global

best formations [13].
• Additional improvements can be achieved by combin-

ing our method with the multi-dimensional (MD) PSO

[14].
• Now, the stabilized poles can be used as a feature in

heart beat classification.

In the future we plan to examine the properties of the MD

PSO algorithm in rational function approximation. We as-

sume that it can be easily adapted to the pole optimization

problem by applying the same analogy of [14]. In this sense,

a good approximation can be acquired without using any type

of priory information. Furthermore, it is possible to determine

not just the positions of the best poles, but multiplicities and

the number of different poles as well.
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