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ABSTRACT

The problem of seismic events detection constitutes one of the
most important and vital tasks for the automatic identification
of the seismic phase arrivals. In this work, we propose a new
thresholding type technique, tailored to fit real world situa-
tions where our knowledge on the statistical characteristics
of the background noise process are unknown and a strict hy-
pothesis testing framework can not be followed. In such cases
the replacement of the unknown probability density function
under the null hypothesis by its empirical counterpart, consti-
tutes a possibility. In this work, a two stage procedure is pro-
posed. The first one concerns the estimation of the empirical
functions of the noise process itself as well as its whitened
counterpart. In the second stage, using the above empirical
functions, a thresholding scheme is proposed in order to solve
the problem of the detection of seismic events in a non strict
hypothesis testing framework. The performance of the pro-
posed technique is confirmed by its application in a series of
experiments both in synthetic and real seismic data sets.

Index Terms— Seismic events detection, Hypothesis
testing, Estimation of empirical pdf, Thresholding.

1. INTRODUCTION

Methods that deal with the seismic event detection and phase
identification are a topic of ongoing research. A robust sig-
nal detection algorithm plays a crucial role in events location,
focal mechanism determination as well as in other applica-
tions such as passive seismic tomography investigations, early
warning to name a few. Most of the techniques that have been
proposed and applied up to now for seismic event detection,
are mainly based on energy criteria and referred in the liter-
ature as Short Term Average/Long Term Average (STA/LTA)
detectors. In its simplest form [1], the STA/LTA algorithm
processes filtered seismic signals in two moving windows and
compares their absolute values ratio to a user threshold value
in order to declare a seismic event.

This idea was adopted by Allen [2, 3], Baer and Kradolfer
[4] and Earle and Shearer [5], who propose different charac-
teristic functions, based on the trace amplitude, which must
be compared to an empirically set threshold. Apart from the
well known STA/LTA detectors, seismic event detection algo-
rithms that utilize polarization properties of the seismic sig-
nals, (by Magotra et al. [6], and Ruud and Husebay [7]) in
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order to enhance the detection rate of the seismic events have
also been proposed. A comparison of existing time and fre-
quency domain detection techniques can be found in the work
of Withers et al. [8]. There are also numerous techniques that
have been developed, based on the idea of discriminating the
seismic signals from the background noise, but are mainly
used for the automatic identification of the seismic phases
(automatic picking) rather than event detection. Such well
known methods are based on higher order statistics [9, 10]
and wavelet analysis [11]. Moreover, hybrid methods which
incorporate the wavelet transform with the Akaike Informa-
tion Criterion or energy criteria with the polarization features
of the seismic signals are presented in [12] and [13] respec-
tively.

In this work we propose a new method, based on the es-
timation of an empirical distribution of the noise process as
well as a residual based empirical distribution, in order to use
a non strict hypothesis testing scenario for discriminating the
recorded noise from the seismic signals.

2. PROBLEM FORMULATION

Let us denote with ,,, n = 0,1,--- ,T'—1, the record from a
given station and let us also assume that during the recording
interval occurred an unknown number K, of seismic events.
If we denote with s, n = 0,1,..., T}, — 1, the signal pro-
duced by the k-th event and with ny, the corresponding wave
arrival time, then x,, can be expressed as:

K

T =Y Sk +wn, (1)

k=1

where wy, is a realization of the noise process W,,. The prob-
lem at hand is then the detection of the presence of the events
in the record and the segmentation of the given record into
signal and noise intervals. In the proposed methodology we
assume that the record z,, is sparse. In addition, let us con-
sider the set 7 = {1,--- , T}, where T is the duration of the
record, and its subset A/, containing all the time points 7 re-
lated with the noise intervals of the record, with |[N| = N
being its cardinality. Then, the set £ = T — A/, will contain
all the time points n related to the seismic events contained in
the given record, with |€| =T — N.

2.1. Events Detection as a Hypothesis Testing Problem

Let x; be a block of length L of consecutive i.i.d. noise
samples, drawn from a known probability density function
fw(w). Then the event detection problem can be formulated



as a simple, block based hypothesis testing one with the null
and alternative hypotheses defined as follows:

Ho: fw(wihy ) ~  fw(w)
Hi: fw(wihy,) # fw(w) )

where fyy(w;hj ) constitutes an estimation of the proba-
bility density function of the RV V), based on the histogram
hy = [h1 ho har,,, ] of the data block x;, and Byy
is a Myy-bins partitioning of the support of the pdf fiy(w).
By considering, that J1(fw(.;hg )|[fw(.) is a statistic
whose statistical distribution under the null hypothesis is
known (even asymptotically, i.e. when L. — 00), it can be
used to measure the discrepancy existing between the theoret-
ical probability density function and an empirical counterpart.
Indeed, we can set the desired level of significance o to de-
cide between the hypotheses defined in Equ. (2) thus solving
the hypothesis testing problem.

However, in real cases the above mentioned pdf is un-
known and safe assumptions for the noise process except
maybe wide sense stationarity and second order ergodicity,
can not be made. In such cases, a possibility is the replace-
ment of the unknown probability density function fyy(w)
by its empirical counterpart fyy(w;hg,,), where hg,, is
the average of the histograms hfgw, 1 = 1,2,... resulting
from data blocks drawn from the noise process. Note though
that the estimation of the above mentioned empirical func-
tion from the given data record is not an easy problem. In
addition, the statistical distribution of the modified sample
statistic J7,(fw(.;hg, )|[fw(;hg,,)) becomes unknown,
and a strict hypothesis testing scenario can not be followed.
In the next section we are going to propose a solution for the
above mentioned problems.

3. THE PROPOSED SOLUTION

In this section we propose the use of a two stage procedure
for the solution of the above mentioned problems. The first
stage of the proposed procedure, accepts as input a record
of seismic data and the noise based as well as the residual
based empirical distributions of the background noise pro-
cess are produced in its output. In the second stage, having
obtained the aforementioned functions, a simple thresholding

type test based on the statistic JL(fW(.; hiBW )| |fW(.; hg,,))
is applied, for achieving the desired discrimination between
“noise” and “signal” samples.

3.1. Estimation of Empirical Distribution

To begin with, let us concentrate ourselves on the first stage
of the proposed procedure which is responsible for the esti-
mation of the empirical pdfs of the noise itself as well as its
whitened counterpart, from the given data record. Accord-
ing to Equ. (1) a seismic record constitutes the superposition
of noise and a number of seismic signals that has occurred.
Thus, initially a “sufficient” subset of the noise samples of the
given record has to be isolated and then the desired estima-
tion can be obtained by means of a detailed histogram. This
specific stage consists of four steps, including sampling and
modeling of a number of blocks from the given data record,
clustering using a special algorithm based on the use of the

correlation coefficient as a similarity measure, in order to iso-
late the “noise” part of the record, and finally the estimation
of the desired empirical probability density functions.

3.1.1. Sampling
Let us consider the following set of I blocks of samples that
have been drawn independently and with replacement from
the given record z,,,n € T:
X:{lex%"'axl} (3)
where the i-th element of set X is a block of length L of con-
secutive samples, that iS X; = [Tn,, Ty 41y« -« Tny+L—1)"
with its start time index n; being a uniformly distributed dis-
crete random variable that ensures equiprobable selection of
any L-length block from the T'— L 4 1 contained in the given
record.

We must stress at this point that the choice of the number
of blocks I is crucial in the sense that a“sufficiently” large [
is needed to ensure that the proposed method will result to a
good estimation of the noise distribution, while at the same
time / must not be much larger than 7" — L + 1 to avoid the
sacrification of the independence among them [14].

Having formed the set X of Equ. (3) our goal now is
to identify the blocks that have been drawn from the noise
process. This is exactly the goal of the second stage of the
pipeline, where the use of data modeling for the reduction of
the dimensionality of the problem at hand as well as for the
whitening of the noise process is proposed.

3.1.2. Modeling

We are going to solve the modeling problem by using
the maximum likelihood method. Thus, we denote with
fx;(x;]0;) the conditional joint pdf of the random vector
X; represented by the observed sample vector x; and 6; is
a parameter vector whose structure and length are strongly
related to the specific choice of model we select to use for the
given data. In this work we propose the use of a P-th order
autoregressive model denoted by AR(6, P).

Given the length L block of data x; we must estimate the
parameters of the model. To this end we need to define an ap-
propriate measure of the fit between the model and the data.
This implies that (unless we have some prior information) the
estimation procedure demands the use of a cost function for
selecting the model order. Such a function which is based
on the likelihood and the Kullback-Leibler Divergence mea-
sure, is the corrected Akaike Information Criterion (AICc)
[15] which, for finite sample sizes and for a model of order
P;, is defined as follows:

2P,(P; + 1)

“4)

where 0 is the maximum likelihood parameter estimator of
length P;, resulting from the solution of the following opti-
mization problem:

07 = arg n}g&xl(@i) = arg max fx, (x:]0;), (5)

i

1(07) is the achieved maximum of the likelihood function and
L the number of the available data points.



We can now find out the optimal model for the given data
block by solving the following optimization problem:

Pr = argmin{AICc¢(F;)} 6)
P,cP

where PP is a subset of the set of natural numbers with its cardi-
nality defining the maximum order of the candidate AR mod-
els.

Solving the above defined problem for each member of set

X defined in Equ. (3) and by selecting P* = max
i € {1,2, I}

we can form a P* x I matrix ® by placing the optimal pa-
rameters €7, resulting from the modeling of the data block
X;, in its 4-th column, and compute its column standardized
counterpart ©°.

Our goal now is the grouping or clustering of the “similar”
columns of the above defined matrix. That is, we have to solve
a clustering problem. This is exactly the task implemented in
the third step of the proposed procedure.

3.1.3. Clustering
It is clear that each column of parameters matrix ©° can be

represented by a point in the Euclidean parameter space R”".
Moreover, because of their standardization all these points are
located on the surface of the hypersphere S ~1). Thus, in
order to identify a representative cluster of the noise model,
that is a dense subset of noise models located on a small area
of the surface of the aforementioned hypersphere, let us de-
note by Ope the standardized counterpart of the median vec-
tor, which can be evaluated from the medians of the P* rows
of matrix ®°. Then, we can compute the following inner
products:

Pi:<9?neda é?>ai:1527"'7la 7

and use them, to form the subset ®* of columns of matrix ®
by using the following set of indeces:

Q={i=1,2,---,I :p; >cos(p)} (8)

where ¢ is a small angle' that we use in order to control the
tightness of the noise cluster. Since p; quantifies the correla-
tion existing between the standardized median and the i—th
parameter vector, we are expecting that the more its value
tends to unity the more alike the parameter vector to the stan-
dardized median is, and thus its proximity to the unity can
be used as a safe criterion to form the desired noise models
cluster. Finally, because of the sparsity (ie. N >> T/2)
of the seismic record, the cardinality Q) of set Q defined in
Equ. (8) will be large enough, thus ensuring the critical size
of samples needed for the estimation of the desired Empirical
pdfs. As it is expected, the proposed procedure leads to a ro-
bust clustering technique that identifies succesfully the kernel
of the desired noise cluster.

3.1.4. Empirical pdfs

Let us assume that from the [ initial blocks x;, () have been
isolated by the above mentioned clustering procedure. Then,

In all experiments we have conducted ¢ was set to /180, i.e. one
degree.

{F}

these () blocks have been drawn from the noise process and an
estimation of the desired empirical probability density func-

tion fw (.;hp,,) of the noise process, can be directly obtained
by evaluating the mean of their respective histograms, that is:
Mw

fwwihg,) = >" hy,ls,, (W), )

My =1

where h,,, are the average relative frequencies with re-
spect to each bin B, of the partition of the support of

fw(w hg,, ), for all @ blocks Xq, ¢ = 1,2, Q that
belongs to the noise process, and 15, ( ) is the indicator
function of set 53,,,,. In addition, we can exploit the average

model 6 resulting from the clustering step, in order to obtain
a distribution based on the residuals after the Whitening of the
noise process blocks. Specifically, by ﬁlterlng each noise pro-
cess block x4, by the average model 6", whose p—th element
is defined as follows:

o QZ@M, p=1,2,..., P, (10)

we obtain () blocks containing the residuals r,, that corre-
spond to the noise process blocks. Following the same proce-
dure as above, we can obtain an estimation of a residual based
empirical pdf, that is:

f rihg,) = an

Z hon, 15, (7

m,.=1

where h,,,, are the average relative frequencies with respect to

each bin B,,,,. of the partition of the support of fz (r; hg,, ) for
all @ blocks of residuals ry, ¢ = 1,2,---, Q and 15, ()
is the indicator function of set 5,

What remains in order to complete the presentation of our
technique, is a procedure for detecting the seismic events.
This is exactly the goal of the next subsection.

3.2. A Thresholding type Statistical Test and Events De-
tection

As it has already been mentioned, the fact that the real dis-
tribution of the statistic Jz(fw(.; hg, )|[fw(;;hp,,)) is un-
known does not allow us to accept or reject the null hypothesis
by setting a level of significance a. In order to overcome this
obstacle, we define the following statistics:

Sj(i) = Tu(fz(:hip, )1 fz(5h,5.)),

where superscript ¢ refers to the data block x; and use them
for solving the problem at hand. In order to achieve our goal,
let us make now the following choices for the parameters of
the above defined statistics:

J=12, (12)

Mz
1Bz = ] B, (13)
mZ:1
and 5Bz such that the following inequality be held:
Mz—mo _
> hmz/ L, (z)dz>1—a. (14
B

mz=mgo 20mz



Note that although 1Bz and 55z correspond to the same par-
titioning, it is clear that the later is a subset of the former.
Specifically, given the level of significance « the value of the
lower limit mg of the summation is selected such that the in-
tegral under the “’truncated” pdf to be greater than or equal to
the right hand side of Inequality (14). Finally, note that we
have the possibility to use the noise or the residual based em-
pirical functions in the evaluation of the above defined statis-
tics by assigning to the RV Z the RV WW or RV R respectively.

Let us now consider that with the aim of a sliding win-
dow of length L, we are evaluating the above defined statis-
tics for each sample of the given data set, thus forming two
sequencies. The values of the aforementioned statistics, are
expected to be close to each other, when the data block x;
contains only samples drawn from the seismic noise. On the
other hand, when data block x; enters a seismic signal, the
values attained by the statistics will be in general different
and strongly related to the used level of significance « in Equ.
(14). This relation is exactly what we propose to exploit in or-
der to solve the detection problem at hand. In particular, the
following simple thresholding scheme:

S1(i) > max Sy(i),i=1,2,---, T (15)
i€ [1---T)

is proposed for the detection of the seismic events, and this
concludes the presentation of the proposed technique. In the
next section we are going to evaluate its performance.

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
method by applying it in both synthetic and real seismic data
sets. The synthetic seismic signals, described by Equ. (1),
were modeled as low-pass filtered Gaussian noise, multiplied
by a half-Gaussian window for the effect of amplitude shap-
ing, and a constant gain, controlling the signal-to-noise ratio
(SNR). In order to construct a data record, first the noise pro-
cess wy, was created and then the synthetic signals s¥ with the
desired SNR value in the range [0 10] were formed. More-
over, the onset times were obtained by random selection in
the interval [1 T'] and the resulting signal x,, was calculated,
by using Equ. (1). We must stress at this point that, since
the proposed test defined in Equ. (15) does not depend on the
specific form of statistic 77,( . || . ) used for its definition, any
of the well known statistics that measures the discrepancy be-
tween two density functions can be used. In our experiments
Pearson’s Chi-Squared goodness-of-fit statistic [16] is used.
Finally, we must say that in all experiments we are going to
present, the level of significance o was set to 10~2 and the
number of blocks, of length L = 500 samples each, that have
been drawn independently and with replacement from each
seismic record was I = 500.

4.1. Experiment I-Synthetic Data

In this first example we are going to evaluate the performance
of the ingredients of the proposed technique by applying it
to synthetic seismic data. To this end we constructed 500
records (10 min of duration each), of synthetic seismic data
containing a total number of 2500 events, by using the above
mentioned process generator with an ARMA(2, 2) process
used as the noise process w,, in Equ. (1).

Aiming to test the modelling capabilities of the proposed
technique, in the first part of this experiment, the input of
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Fig. 1. A samplfa Z)f a synthetic seismic signal (a), the parameters of the
mean model (black) and their confidence values before (red-dotted) and after
the clustering (green-dotted) step (b). Empirical pdfs of the noise process
resulting from noisy blocks after the clustering step (c) and their whitened
residuals (d) obtained from the application of the proposed technique. For
comparison purposes, in both Empirical pdfs the Gaussian kernel (red) is
superimposed.

the above mentioned ARMA(2,2) model was feeded by white
Gaussian noise of unit power. Part of a synthetic record con-
taining three events with SNR 5 is shown in Fig. 1.(a). The
values of the parameters of the mean model resulting from
the application of the modeling procedure described in Sub-
section 3.1.2 as well as their confidence intervals before(red-
dotted line) and after the clustering step (green-dotted line),
are shown in Fig. 1.(b). Moreover, a detailed histogram, that
could be considered as the empirical pdf of the noise pro-
cess, resulting by the blocks of the noise process isolated by
the clustering technique proposed in Subsection 3.1.3, is pre-
sented in Fig. 1.(c). Note the departure of the empirical distri-
bution from the normal one. This departure mainly happens
because the samples of the noise process are correlated. Fi-
nally, in Fig. 1.(d) we can see a detailed histogram resulting
from the residuals obtained after the whitening of the blocks
of noise process. As we can see from this figure, the esti-
mated histogram is perfectly matching the theoretical Gaus-
sian function, thus revealing its effectiveness.

Furthermore, we tested our technique by using the same syn-
thetic data set but with the white Gaussian noise source re-
placed by a mixture of a gaussian and a uniform distribution,
and the percentage of the successfuly detected events as well
as the percentage of the false alarms were calculated. Only
the cases where the estimated onset time was in a reasonable
neighborhood 2 of the real one, were considered as successful
detections.

[ Table I: Detection Rate (DR) & False Alarms (FA) |

I | Residuals | Noise |
SNR (dB) || DR (%) | FA (%) || DR (%) | FA (%)
0 91.6 8.8 92.4 10.7
2 972 1.5 98.2 3.8
5 100 0 100 2.0
10 100 0 100 0.5

The results we obtained for four different SNR values are con-
tained in Table I. From the contents of the table, it is evident
that in low and medium SNR values the noise based empiri-
cal pdf marginaly exhibits a better detection rate performance

2The neighborhood of a real onset time is considered as an interval of
length L /2 samples (L /4 samples before and after that time) where L is the
length of the used sliding window.



while in high SNR values both approaches seem to have an
excellent performance. Finally, as it is clear, the noise based
empirical pdf suffers from a higher number of false alarms for
all SNR values.

4.2. Experiment II-Real Data

In this experiment we apply the proposed technique in real
seismic data and its performance is compared against the
STA/LTA technique, which is one of the most frequently used
techniques by the seismologists. The real data set was com-
prised by 50 pre-cut records of continuously recorded seismic
data, during a period of high seismicity. The “true” number of
events, counted by an expert analyst, contained in the above
mentioned 10 hours duration records were 500 with different
amplitudes and durations. By using a window of length L =
200 samples (2 sec), the proposed detector and its rival were
applied to the above data set and the results we obtained are
contained in Table II. As we can see from the contents of
Table II, the proposed method succeeded in identifying 489
and 486 seismic events with the use of residuals and the noise
process respectively, and with the corresponding number of
false alarms being approximately 22 and 30 respectively.
On the other hand STA/LTA, even the special way we have
treated it * , succeeded in identifying 417 seismic events and
with the number of False Alarms increaced to 83.

These results reinforce the findings of Experiment I and
confirm the appropriateness of the proposed technique for the
problem at hand. This is also evident in Fig. 2 where the
solutions to the detection problem obtained by the two rivals
for a specific record of the real data set are shown. More
specificaly, in Fig. 2.(a) curves of the statistics Sy (.) (black)
and Sa(.) (green) in logarithmic scale, as well as the threshold
value (dashed line) corresponding to the maximum value of
the sequence S (.) defined in Equ. (12) are depicted. Finally,
in Fig. 2.(b), the performance of STA/LTA algorithm on the
same record with the empirically set threshold (dashed line)
are illustrated. Note that in the specific example, although
the detection performance of both rivals can be considered
comparable, STA/LTA seems to suffer from the problem of
false alarms.

[ Table II: Detection Rate (DR) & False Alarms (FA) |

I Proposed (%) | STA/LTA (%) |
[ Residuals [ Noise || |
DR | FA DR | FA DR FA
978 | 44 ] 972 | 6.0 83.4 17.6

5. CONCLUSION
In this paper a new non strict hypothesis testing based method
for the solution of the seismic events detection problem was
proposed. The effectiveness of the proposed technique in
identifying seismic events was confirmed from its application
in a series of experiments both in synthetic and real seismic
data sets. Although the advantages of the proposed technique
against the widely used STA/LTA technique were demon-
strated, the developement of a mechanism for controling the
way the level of significance of the test affects the detection

3For each record the value of the needed threshold was selected by an
expert analyst, such that the maximum possible number of detected events
to be achieved while at the same time the number of False Alarms to be
minimum.

(b)
Fig. 2. Test and Detection curves in logarithmic scale achieved from the
application of the proposed method (a) and STA/LTA (b) in a real data set.

The threshold values for both algoritmhs are indicated by dashed lines (see
the text for more details).

and the false alarms should be considered. This is an issue
that is currently under investigation.
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