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ABSTRACT

Identification of a relative transfer function (RTF) between
two microphones is an important component of multichannel
hands-free communication systems in reverberant and noisy
environments. In this paper, we present an RTF identifica-
tion method on manifolds for supervised generalized side-
lobe canceler beamformers. We propose to learn the manifold
of typical RTFs in a specific room using a novel extendable
kernel method, which relies on common manifold learning
approaches. Then, we exploit the extendable learned model
and propose a supervised identification method that relies on
both the a priori learned geometric structure and the measured
signals. Experimental results show significant improvements
over a competing method that relies merely on the measure-
ments, especially in noisy conditions.

Index Terms— Array signal processing, system identifi-
cation, manifold learning, acoustic modeling

1. INTRODUCTION

Identification of a relative transfer function (RTF) between
two microphones is an important component of multichannel
hands-free communication systems in reverberant and noisy
environments. Modern beamformers often require an esti-
mate of the room impulse response (RIR) relating the source
and the microphones. Room impulse responses (or their
respective acoustic transfer function (ATF)) estimation in a
noisy environment is a cumbersome task. Hence, it was pro-
posed [1] to replace the ATFs by the RTFs in the beamformer
design. An accurate identification of the RTFs leads to sig-
nificant improvement in the performance of the beamformer
[1, 2]. Over the years, several RTF identification methods
based merely on the measured signals have been proposed
[3, 4]. However, these methods often suffer from poor results
in noisy environments, since a large number of independent
parameters need to be estimated. To overcome such a short-
coming in adverse environments, recent supervised system
identification methods [5, 6] utilize representative RIRs to
form a model in advance, which, in turn, is incorporated into
the identification procedure.

In this paper, we suggest a different, supervised, approach
to the problem of RTF identification, similar to [7, 8]. Al-
though acoustic modeling is considered a difficult problem,
we observe that RIRs are governed by few parameters, e.g.
the size and geometry of the room, the positions of the source
and the microphones, and the reflective properties of the
walls. As a consequence, acoustic paths exhibit geometric
structures of low dimensionality, which are often called man-
ifolds, and may be accurately parameterized using manifold
learning methods [5, 6, 9]. In this work, we consider a room
with a pair of microphones in a fixed location and assume
that the possible positions of the desired source are confined
to a specific known region. Examples to such rooms are a
conference room, in which the microphone array is located in
a fixed location on the conference room table and the speak-
ers sit around the table in designated locations, or an office,
in which the microphone array in located in a fixed location
on the desk or on the computer screen and the speaker sits
behind the desk in typical positions. Focusing on designing
a solution for a specific room enables us to assume the avail-
ability of a training set, i.e., a set of RTFs from the region
of possible source positions. Such a set may be acquired by
performing repeated recordings of fully-exciting training sig-
nal from the region of source positions in controlled noiseless
conditions, and the corresponding RTFs can be accurately
estimated using a standard system identification method, e.g.
a least squares fit. We learn the manifold of the training set of
the RTFs using a novel extendable kernel method [10], which
relies on Laplacian Eigenmaps [11] and Diffusion Maps [12].
Then, we utilize the extendable learned model and propose
a supervised identification method that relies on both the a
priori learned geometric structure and the measured signals.
Experimental results show significant improvements over a
competing method that relies merely on the measurements,
especially in noisy conditions.

2. RTF IDENTIFICATION

In this section, we repeat the procedure presented in [1]. Let
spnq denote a speech signal, and let upnq and wpnq denote
stationary measurement noise signals. The signals are mea-
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sured by two microphones:

xpnq “ h1pnq ˚ spnq ` upnq

ypnq “ h2pnq ˚ spnq ` wpnq (1)

where ˚ represents convolution, and h1pnq and h2pnq are the
RIRs between the two microphones and the source, respec-
tively. An equivalent representation of (1) is

ypnq “ hpnq ˚ xpnq ` vpnq

vpnq “ wpnq ´ hpnq ˚ upnq (2)

where hpnq represents the relative impulse response between
the microphones with respect to the source and satisfies
h2pnq “ hpnq ˚ h1pnq. In (2) the relative impulse response
is represented as a linear time-invariant (LTI) system with the
measured input xpnq, the measured output ypnq, and additive
noise vpnq. However, vpnq depends on both xpnq and hpnq,
and thus, standard system identification methods cannot be
applied to obtain hpnq.

The signals are analyzed in the short-time Fourier trans-
form (STFT) domain using the multiplicative transfer func-
tion (MTF) approximation for modeling an LTI system in the
STFT domain [13]. Using (2), the cross power spectral den-
sity (PSD) between ypnq and xpnq can be written as

λyxpl, kq “ hkλxxpl, kq ` λvxpkq (3)

where l and k represent the time frame and frequency bin in-
dices, respectively, and hk is the relative transfer function.
Replacing the cross-PSD terms with their estimates yields

pλyxpl, kq “ hkpλxxpl, kq ` λvxpkq ` εpl, kq (4)

where εpl, kq “ pλvxpl, kq ´ λvxpkq is the cross-PSD estima-
tion error of λvxpkq. Assume Nf time frames of measure-
ments are available. Writing (4) for each time frame l “
1, . . . , Nf yields Nf distinct equations due to the the non-
stationarity of the speech signal. Thus, we obtain a system
of Nf linear equations in two variables hk and λvxpkq. The
corresponding weighted least square (WLS) estimate of the
two variables pθk “ rphk, pλvxpkqsT for each frequency bin k is
given by

pθk “ argmin
θk

rpsyxpkq ´ Sxxpkqθkq
H

ˆΣkpsyxpkq ´ Sxxpkqθkqs (5)

where Σk is the weight matrix, p¨qH is a conjugate transpose,

Sxxpkq “

„

pλxxp1, kq
1

¨ ¨ ¨

¨ ¨ ¨

pλxxpNf , kq
1

T

,

and syxpkq “ rpλyxp1, kq, . . . , pλyxpNf , kqs
T . The solution of

(5) with optimal weights that minimize the variance of the
estimator [14] is given by

phk “
xpλxxpl, kqpλyxpl, kqyl ´ xpλxxpl, kqylxpλyxpl, kqyl

xpλ2xxpl, kqyl ´ x
pλxxpl, kqy2l

(6)

where xλpl, kqyl “
řNf

l“1 λpl, kq{Nf is an average operator.

3. MANIFOLD OF RTFS

Let R be a set of RTFs from the region of possible source po-
sitions. Based on measurements in controlled noiseless con-
ditions, the RTFs can be estimated using a standard system
identification procedure, i.e., shk “ xpλyxpl, kq{pλxxpl, kqyl,
where sh is a vector consisting of all frequency bins values.
By collecting all the identified RTFs tshnuwe obtain the train-
ing set R. We learn the manifold of the training set of the
RTFs using an extendable kernel method [10], which relies
on Laplacian Eigenmaps [11] and Diffusion Maps [12]. Let
WR be a kernel defined on the training RTFs, whose pn,mq-
th element is given by

WR
nm “ exp

"

´
}shn ´ shm}2

2ε

*

(7)

where shn, shm P R and ε ą 0 is the kernel scale. Setting the
kernel scale exceeds the scope of this paper and was studied,
for example, in a paper by Hein and Audibert [15].

The eigenvalue decomposition (EVD) of the kernel cap-
tures its significant components and may provide a compact
parameterization of the manifold of the RTFs. Let Nt be the
number of RTFs in the training set R. Thus, the size of the
kernel WR is Nt ˆ Nt and the length of each eigenvector
is Nt. Moreover, the eigenvectors can be viewed as func-
tions of the training RTFs, where the n-th coordinate of each
eigenvector is associated with the n-th training RTF. These
functions can describe the data in terms of their natural pa-
rameters representing physical meanings. For example, it was
shown that the eigenvectors can represent the poles of an auto-
regressive system [16] as well as the acoustic parameters of
RIRs, such as the position of the source [9] or the room rever-
beration time [17]. Let tµj ,ϕju be the set of the eigenvalues
and eigenvectors of WR, respectively. It can be shown that
the eigenvalues are real and positive, and hence, can be writ-
ten in a descending order µ0 ě µ1 ě . . . ą 0.

The eigenvectors form a complete basis for any real func-
tion on the data. In particular, let ik be a function that retrieves
the k-th frequency bin from each RTF, i.e., ikpshnq “ shnk .
Thus, each coordinate of the training RTFs can be expanded
as follows

shnk “
Nt´1
ÿ

j“0

ck,jϕjpnq (8)

where ck,j are the projection coefficients on the basis, i.e.,
ck,j “ xik,ϕjy fi rsh1k, . . . ,

shNt

k sϕj . Typically, the spectrum
of the kernel is fast decaying. According to the decay of the
spectrum (the eigenvalues), we determine the dimension ` of
the manifold and assume that the ` eigenvectors associated
with the ` largest eigenvalues provide accurate parameteriza-
tion of the manifold. Thus, in (8) we may merely sum over
these ` eigenvectors.
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Next, we utilize the parameterization of the training set
in order to get a description of any RTF (not necessary in
the training set) from the learned region in the room. Let A
be a non-symmetric kernel defined between any RTF hi and
each of the RTFs in the training set, whose pi, nq-th element
is given by

Ain “
1

ωndi
αphi, shnq, shn P R (9)

whereαphi, shnq “ exp
 

´}hi ´ shn}2{ε
(

, di “
ř

n αph
i, shnq,

and ωn “
ř

i αph
i, shnq{di. In [10], Kushnir et al. showed

that the training kernel satisfies WR “ ATA. In addition,
the dual kernel W “ AAT can be viewed as an extended
kernel, whose pi, jq-th element measures the probability
that any two RTFs hi and hj are associated with the same
training RTF [18], and its eigenvectors provide an extended
parameterization for any RTF. The construction of the kernels
implies: (1) WR and W share the same eigenvalues tµju

which are the square of the singular values of A, (2) the
eigenvectors tϕju of WR are the right singular vectors of
A, and (3) the eigenvectors tψju of W are the left singular
vectors of A. The singular value decomposition (SVD) of
A describes the algebraic relation between the eigenvectors,
i.e.,

ψj “
1
?
µj

Aϕj . (10)

The aforementioned relationship enables to efficiently extend
the eigenvectors to new RTFs without applying the compu-
tationally expensive EVD. The extension algorithm consists
of two stages. In a training stage, the kernel WR is directly
calculated based on the training set, and its eigenvalue decom-
position is computed. The eigenvectors of the kernel form a
learned model for the training set. In the test stage, as new
estimates of RTFs become available, we construct A accord-
ing to (9), and then compute the extended eigenvectors of W
by exploiting the algebraic relationship given by the SVD in
(10). Once the extended parameterization is obtained, we can
expand any RTF from the region of interest similarly to (8) as

hik “
`´1
ÿ

j“0

ck,jψjpiq ` ε
i
k (11)

where εik is an error term, which stems from the use of the
coefficients ck,j (8) based on training and becomes smaller
as the number of training RTFs increases. Substituting ψjpiq
from (10) into (11) yields

hik “
`´1
ÿ

j“0

µ
´1{2
j ck,j

Nt
ÿ

n“1

Ainϕjpnq ` ε
i
k. (12)

By reordering (12) we get

hik “
Nt
ÿ

n“1

AinDnk “ pADqik ` ε
i
k (13)

where D is matrix that can be computed in advance and
whose pn, kq-th element is Dnk “

ř`´1
j“0 µ

´1{2
j ck,jϕjpnq.

When we are interested in finding the parameterization of a
single new RTF h, the matrix A is reduced to a vector, and
(13) is rewritten by concatenating all frequency bins as

h “ DTa` ε (14)

where a is a vector of lengthNt whose n-th element is defined
similarly to (9) as an “ exp

 

´}h´ shn}2{ε
(

.

4. SUPERVISED RTF IDENTIFICATION

The geometric information extracted from the training set
is summarized in (14). It implies that every RTF from the
learned region of interest can be expanded by the learned
building blocks (the extended eigenvectors). Thus, combin-
ing (5) and (14) yields the following constrained identification
procedure that relies on both the a priori learned geometric
structure and the measured signals

pθk “ argmin
θk

rpsyxpkq ´ Sxxpkqθkq
H

ˆΣkpsyxpkq ´ Sxxpkqθkqs, @k

subject to h´DTa ď ξ (15)

where ξ ą 0 is a small constant. The nonlinear form of the
coefficients a “ aphq makes (15) hard to solve. Thus, we
relax the problem and split it into two stages. In the first
stage, we obtain a solution phwls by solving the WLS prob-
lem (6) for each frequency bin, which relies merely on the
noisy measurements. In the second stage, we exploit the prior
geometric information and project the WLS solution onto the
building blocks of the learned manifold, i.e.,

ph “ DTapphwlsq. (16)

Thus, the new estimate is restricted to the learned manifold
of RTFs (although it is not limited to be one of the training
RTFs). Algorithm 1 summaries the identification procedure.

5. EXPERIMENTAL RESULTS

Based on the image method [19], we simulate acoustic im-
pulse responses in a room of dimensions 6 ˆ 6 ˆ 3 m with a
moderate reverberation time of T60 “ 0.15 s. We place the
two microphones at p3.1, 1, 1q m and p3.2, 1, 1q m. A grid of
Nt “ 150 source positions in a sector of an approximate size
of 50 ˆ 50 cm at a distance of 3 m from the microphones is
used for training. Figure 1 illustrates the room setup.

The training data consist of repeated recordings of a
speech signal sampled at 16 kHz and duration of 3 s from
each position on the grid in noiseless conditions; the anechoic
speech signal is convolved with the corresponding simulated
impulse responses between the positions on the grid and the

3
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Algorithm 1
Learning the Manifold of RTFs (Training Stage):

1. Obtain training recordings from the region of interest
in the room in noiseless conditions.

2. Compute a training set R of typical RTFs.

3. Construct the kernel WR (7).

4. Compute the eigenvalue decomposition
 

µj ,ϕj

(

j
of

WR and compute the projection coefficients D.

Supervised RTF Identification (Test Stage):

1. Obtain a new segment of measurements.

2. Compute the WLS solution of the RTF (6).

3. Confine the RTF to the learned manifold (14).

0

2

4

6 0

2

4

6

0

1

2

3

Fig. 1. An illustration of room setup. The circles mark the
pair of microphones and the dots mark a grid of possible
source positions.

two microphones to generate the microphone measurements.
The test data consist of a recorded speech signal, which is
generated by convolving the anechoic speech (different from
the signal used for the training data) with a simulated impulse
response from a random position within the learned sector
and the two microphones. In addition, white noise is added
to the measured signal. Various signal to noise ratios (SNRs)
are examined. The PSD is implemented using relatively long
time frames of length 8000 samples to correspond to the long
length of the RTFs. For the supervised identification, we use
` “ 20 eigenvectors out of the available 150.

Figure 2 illustrates the parameterization of the manifold
of impulse responses. We show a scatter plot of the 150 com-
ponents of the principal eigenvector ϕ1 of the training kernel
and the x-coordinates of the 150 training positions on the grid.
We observe a close to linear correspondence; it implies that
the manifold of RTFs has a physical meaning and that the
parameterization indeed captures one of the acoustic parame-
ters, which is in this case the position of the source.

The presented supervised RTF identification can be used
to build supervised beamformers. For example, the estimated
RTFs can be incorporated into the implementation of a block-
ing matrix in generalized sidelobe canceler (GSC) techniques

1.4 1.5 1.6 1.7 1.8

0.8162

0.8164

0.8166

0.8168

0.817

0.8172

0.8174

x coordinate

ψ
1

Fig. 2. A scatter plot of the values of the principal eigenvector
ϕ1 of the training kernel and the x-coordinates of the training
positions on the grid.
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Unsupervised
Supervised

Fig. 3. The SBF curves obtained by the unsupervised nonsta-
tionary estimator (blue) and by the proposed supervised RTF
estimator (green) as functions of the SNR.

[1, 2]. Thus, we examine the benefit of the supervised method
in terms of the blocking ability and use the signal blocking
factor (SBF) as an objective quality measure. The SBF is de-
fined as

SBF “ 10 log10
varpxpnqq

varprpnqq

where rpnq is the leakage signal defined as rpnq “ hpnq ˚

xpnq ´ ĥpnq ˚ xpnq. This measure indicates the ability to
block the desired signal and produce reference noise signals.
The described experiment is repeated several times with dif-
ferent source positions and different noise realizations and the
reported SBF results are the mean values.

Figure 3 depicts the obtained SBF curves as a function of
the SNR. We compare the proposed supervised RTF estima-
tor to the unsupervised nonstationary estimator [14], which
is given in (6). We observe that the supervised RTF identi-
fication achieves higher SBF compared to the unsupervised
RTF identification. The obtained improvement is greater in
low SNR conditions. In low SNR conditions, the measured
signal is less reliable, and hence, the a priori learned model
becomes more significant and constraining the identified RTF
to the manifold has a greater impact. In addition, relying on
the learned manifold makes the supervised RTF identification
robust to measurement noise. However, the learned model is
limited and the SBF does not increase in SNR higher than
5 dB. Nevertheless, it is still beneficial and yields superior
identification compared to the unsupervised identification.
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We remark that the supervised RTF estimation was also com-
pared to a simple nearest neighbors search among the training
responses and yielded improved results. This demonstrates
the significance of learning the manifold of RTFs rather than
merely using the pre-acquired ones.

6. CONCLUSIONS

We have presented a supervised RTF identification method,
in which the manifold of typical RTFs in a particular room is
learned in advance, and then, exploited to improve the identi-
fication of unknown RTFs based on noisy measurements. Ex-
perimental results show that the presented supervised iden-
tification method exhibits a superior blocking ability over a
competing unsupervised method, especially in noisy condi-
tions. Thus, in a future work, we intend to incorporate this
approach into a GSC beamformer. We expect to attain bet-
ter performance due to the better blocking ability as well as
the more accurate construction of the fixed beamformer. In
addition, we plan to examine the performance of this method
on real recordings in different acoustic and noise conditions.
It would be also interesting to explore the effect of environ-
mental changes taking place after the training stage on the
identification.
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