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ABSTRACT

Finding the number of signals is crucial to parametric direction-of-
arrival (DOA) estimation methods such as MUSIC and ESPRIT. In
challenging scenarios such as low signal-to-noise ratio (SNR) and/or
presence of closely-spaced sources, only part of the parameters can
be accurately estimated while others cannot. The number of former
estimates is termed as the effective model order (EMO). We first
propose a procedure to determine the EMO via Monte Carlo simu-
lation. Ideally an order selection rule should return a source number
estimate equal to EMO, since using an overestimated signal number
larger than the EMO in a parameter estimator introduces inaccurate
parameter estimates, which is a waste of resources in some appli-
cations, while using an underestimate renders some strong signals
being treated as noise, which causes an accuracy loss in their param-
eter estimates. We propose to combine an under-enumerator with
an over-enumerator for accurate parameter estimation in the thresh-
old region. Simulations results using the combination of the Baysian
information criterion with Akaike information criterion in ESPRIT
show that our proposal retains the benefit of the under-enumerators
with only accurate estimates while remarkably improves the estima-
tion accuracy.

Index Terms— Order selection, parameter estimation, threshold
region, effective model order, joint detection and estimation, array
processing

1. INTRODUCTION

Parametric methods for direction-of-arrival (DOA) estimation, such
as maximum-likelihood estimator (MLE), estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) [1] and mul-
tiple signal classification (MUSIC) [2], rely on the knowledge of the
number of signals to properly work. In challenging scenarios such
as low signal-to-noise ratio (SNR) and/or presence of closely-spaced
sources, using the true signal number for DOA estimation leads to
the threshold effect which is characterized by a mean square estima-
tion error (MSE) significantly larger than the Cramér-Rao bound. In
general, the sources have distinct powers and/or unequally spaced
angles. Therefore, the estimation errors among sources are unevenly
distributed: some estimates are centered about the true parameters
and carry small or local errors [3], whereas other estimates carry
large or global errors [3]. The number of former estimates is referred
to as the effective model order (EMO).

In this work, we investigate the optimal choice of the number
of signals in the threshold region in the context of joint signal num-
ber and parameter estimation. In the threshold region, existing order
selection rules tend to underestimate the correct number of signals.
To handle this, an empirical detection method biased toward over-
enumeration is designed in [4] to cater to radar imagery applica-
tions, where it is preferable to overestimate the number of harmonic
components than underestimation. However using an overestimated
signal number in a parameter estimator introduces useless inaccurate
parameter estimates.

We therefore focus on the complementary application scenarios
where under-enumeration is preferred. First we explicitly define the
EMO and determine it via the Monte Carlo simulation. In applica-
tions where inaccurate estimates entail high price and are undesir-
able, overestimation of the EMO should be avoided, because using
an overestimated signal number larger than the EMO in a parame-
ter estimator returns a mixture of both accurate and inaccurate esti-
mates. Therefore, the order selection rules that are prone to underes-
timating the number of signals, referred to as under-enumerators for
short, such as the Baysian information criterion (BIC) [5,6], heavily-
penalized efficient detection criteria (EDC) [7], and estimation error
(ESTER) [8], are good choices since empirically they rarely overes-
timate the EMO in the threshold region.

However, the under-enumerators may underestimate the EMO
to various extents and with various probabilities. And using an un-
derestimated signal number less than EMO for parameter estima-
tion renders some strong signals being treated as noise, which harms
the estimation of other strong signals and results in an accuracy
loss in the parameter estimates. We propose to combine the under-
enumerators with the order selection rules that tend to overestimate
the number of signals, referred to as over-enumerators, for param-
eter estimation in the threshold region. Such a scheme retains the
benefit of the under-enumerators with only accurate estimates while
remarkably improves the estimation accuracy.

2. DATA MODEL AND PROBLEM STATEMENT
Consider a scenario where d far-field narrowband emitting sources
are impinging on a uniform linear array (ULA) of M sensors. The

complex baseband output of the receive antennas is expressed as

X =A(0)S+2Z, )



where A(0) = [a(61),...
matrix, with a(6;) = [1,...,
being the array steering vector. Here, 6; € [-7/2,7/2] is the DOA
of the i-th source, measured relative to the array normal direction,
r is the inter-element spacing of the receiving antenna array, A de-
notes the carrier wavelength, and * stands for the transpose. For
notational convenience, we denote p; = 27rsin(6;)/A and let pu =
[11,- - ., ] be the parameter vector that collects all spatial frequen-
cies. The S = [s],...,55]T € C*N contains the samples of all
sources, with N being the number of snapshots, and Z ¢ CMxN
is the noise matrix collecting uncorrelated ZMCSCG samples with
variance of o2.

Hereafter, we assume that (i) 7 = A\/2 and hence p; = wsin(6;) €
[-m,7]; (ii) the i-th source samples s;, ¢ = 1,...,d, are gener-
ated from an independent ZMCSCG random process with variance
of in. The noise is assumed to be uncorrelated with the signal. The
SNR is defined as SNR = % PO leg

Given the noisy measurement X, we desire to estimate the spa-
cial frequencies p1, ..., 4.

,a(64)] € CM*? is the array steering
oI (M=1)2mrsin(9;)/X T’ i=1,....,d

2.1. Review of State-of-the-art Order Selection Rules

The most commonly used order selection rules are the information
theoretic criterion (ITC) approaches which include the Akaike in-
formation criterion (AIC) [6,9], BIC [5, 6], and EDC [7]. In ITCs,
the number of signals is determined by minimizing the penalized
negative log-likelihood function. The AIC, BIC and EDC as mem-
bers of the family of ITCs, have a common form of cost function,
namely [6,7],

ITC(k) = 2 log (pk (X,é(k))) +O(N)-v 2

but with different penalty coefficients for penalizing overfitting of
the model:

AIC: C(N)=2 3)
BIC: C(N)=1log(N) C)]

EDC: C(N)=+/N -log(log(N)) ®)

where k£ is a candidate value for the estimated number of signals,

pr(X, é(k)) is the likelihood function with being the maxi-
mum likelihood estimate of the parameter vector of the k-th model,
namely, 0™ and v is the number of free parameters in 6" In
the context of sensor array processing, the likelihood function in
(2) is expressed in terms of ratio of the arithmetic and geometric
means of the sample eigenvalues [10]. We see that in AIC a lighter
penalty than BIC is imposed, whereas in EDC, a heavier penalty is
employed. Therefore the AIC is more inclined to overestimate the
number of signals, whereas the latter two are apt to underestimation.

The ITCs are derived based on large-sample asymptotics, and
perform well particularly when the number of samples N is much
larger than that of sensors M. For order selection rules that are ap-
plicable to small sample scenarios, the reader is referred to [11-13].
In addition, some detection methods, e.g., the subspace method ES-
TER [8] and the empirically derived detection method termed here
as discriminant function for eigenvalue classification (DFEC) [4],
are applicable in both large and small sample scenarios.

2.2. Integration of Order Selection with Parameter Estimation

Since the ESPRIT is a closed-form parameter estimator that is accu-
rate and computationally efficient, it is used for parameter estimation

throughout the paper. Note the proposed approach can be general-
ized to other parametric estimation methods such as MLE and MU-
SIC in a straightforward way.

The ESPRIT algorithm uses the signal subspace to estimate the
spatial frequencies. The first step is to compute the eigenvalue de-
composition of the sample covariance matrix

R = %XXH e CMM (6)

where ™ represents the Hermitian transpose. The d eigenvectors as-
sociated to the d largest eigenvalues, where d denotes an si gnal num-
ber estimated by an order selection rule, are assumed to form the
signal subspace U ;.

The shift invariance equation then takes the following form:

J1US‘I’ ~ JQUS, (7)

where ®; € Cdxrj is the unknown matrix to be solved, and J; €
RM-1)xM (resp. J2 € RA-DxMy ¢ the selection matrix formed
by the first (resp. last) (M — 1) rows of an M x M identity matrix.
These sets of equations are overdetermined and can be solved by the
least squares method.

From W, the spatial frequencies are estimated as

fii = arg(\;) i=1,....d, ®)
where \; denotes the i-th eigenvalue of W.

In order to evaluate the performance and calculate the root MSE
(RMSE), we use the greedy algorithm to pair the estimated and true
spatial frequencies. Denote d = min(d, d), after pairing up we have
(/11,/“1) LR (ﬂd_7 :ui(;)s where ‘ﬂl - :u’il‘ << |ﬂd_ - :U/id“|' The
MSE of the parameter estimates is defined as

RMSE(d) = )

2.3. Problem with Use of Single Order Selection Rule for Pa-
rameter Estimation in Threshold Region

In the threshold region, only part of the signal parameters can be
accurately estimated. The traditionally well-performing order selec-
tion rules that target for identifying the correct number of signals
in the asymptotic region may not be a good choice in the threshold
region.

To illustrate this, we consider a scenario where d = 5 sources
with equal powers but different angular separations impinge on a
ULA of M = 10 elements each collecting N = 100 snapshots, with
p = [47,125,-11,38,135]°. Random Gaussian white noise with
a fixed SNR of = 5 dB is added. The parameter estimates and the
estimation errors for a single but representative noisy realization are
displayed in Table 1, where the second to fifth rows respectively cor-
respond to the results obtained when the correct number of signals,
namely, d = 5, the number of signals estimated by the AIC, BIC and
EDC, denoted as dAAIC, CZBIC and dEDC, are respectively used in ES-
PRIT for DOA estimation. The numbers in the parentheses denote
the estimation errors of the individual estimates.

From the second row, we see that among the five estimates, only
three, namely, the ones corresponding to ug = —11°, pa = 38° and
s = 135° are accurate (effective) whereas other the two, namely, the
ones associated to 1 = 47° and po = 125° carry large estimation
errors. This is because two pairs of sources, namely, (p1,p4) =
(47,38)° and (p2,ps) = (125,135)° are closely spaced, and for a



high noise level, the separation between each pair of closely-spaced
sources falls below the resolution of ESPRIT and becomes invisible
and they merge to one. The effective number of signals, namely, the
EMO, is hence equal to 3.

In the third row of Table 1, the AIC overestimates the EMO
by 1, which results in a mixture of 3 accurate parameter estimates
and 1 inaccurate estimate. This is undesirable in applications where
inaccurate estimates entail extra costs.

On the other hand, the BIC correctly estimates the EMO and the
EDC underestimates the EMO by one, in both cases the inaccurate
estimates have been completely excluded. However, in the last col-
umn of Table 1 we see that the RMSE of the resultant estimates by
passing depc = 2 to ESPRIT is 3.91°, which is clearly larger than
that of the two most accurate estimates obtained by passing d = 5 to
ESPRIT, which is only 2.08°. We call this as the accuracy loss. This
is because using depc = 2 in ESPRIT renders one effective (strong)
signal being treated as noise, which harms the estimation of other
two strong signals.

Note that for BIC, under-enumeration of the EMO also occurs
although less commonly than EDC. Therefore, it suffers the accuracy
loss as well. In Section 3, we propose a simple method to reduce the
accuracy loss.

3. PROPOSED APPROACH

Given the number of sensors and samples, number of sources d, sig-
nal powers and DOAs of d sources, and noise level, the EMO can
be determined by the Monte Carlo simulation. Denote the d fre-
quency estimates obtained by passing the correct number of signals
d to ESPRIT and ordered in terms of accuracy as fi1, ..., ftq, With
i1 = piy| < -oo < |fia = pay|, where (fir, piy) 5o, (B, iy ) are
the estimated-true frequency pairs. The effective number of signals,
denoted by d.s, is determined as

defr = , {r}iaxd} £ subjectto RMSE({) <n, (10)
with
NT | ~(n) n)|2
g - |
MSE(¢ k 11
RMSE(Y) = \J s el

where Nt is the number of trials in the Monte Carlo simulation,
{ix (”)} w-1 denote the d frequency estimates in the n-th trial, n =
1,..., Nt, and 7 is the predefined threshold estimation error. To
reduce the statistical error, Nt should be sufficiently large, typically
of the order of 1000.

A close-to-generic settings of 7 is the estimation error corre-
sponding to the threshold point. Fig. 1 shows the identified EMO
for various SNRs by Monte Carlo simulation. Note that the EMO is
equal to the number of sources at a low noise level in the asymptotic
region, and gradually decreases as the noise power increases in the
threshold region, and finally down to zero at a high noise level in the
no information region, also known as permanent state of futility.

As shown in Section 2.3, integration of under-enumerators with
ESPRIT suffers from an accuracy loss in the parameter estimates to
various extents. To reduce the accuracy loss, we can resort to an
over-enumerator. Looking again at Table 1, we see that the MSE
of the two most accurate estimates obtained by passing darc = 4
to ESPRIT improves in accuracy over the ones obtained by passing
CZEDC = 2 to ESPRIT. This is because, different from the latter, in
the former only one non-identifiable signal is treated as noise and
this does not harm the estimation of strong components. This re-
sult is presented in the following conjecture whose proof is left as

future work while numerical simulations are used as corroborating
evidence. .

Conjecture 1 Consider two signal number underestimates d; <
dy < d. If dy < degr < d, the parameter estimates obtained by pass-
ing dy to ESPRIT is less accurate (have larger MSE) than the dy most
accurate parameter estimates obtained by passing ds to ESPRIT.

In order to reduce the accuracy loss of the under-enumerator
while keeping its advantage with only accurate estimates, we pro-
pose to combine it with an over-enumerator in the following steps.

1) Choose a proper over-enumerator to obtain a signal number
estimate, denoted as dup. Let fiy, = [fi1,..., g, ] collect
the dup parameter estimates obtained by passing dub to ES-
PRIT. Normally dup, > degr, and when dyp, > defr, fbyy, is a
mixture of accurate and inaccurate parameter estimates.

2) Use an under-enumerator to obtain a signal number estimate,
denoted as dip.

3) Fordp, > 0, identify the dip, most accurate components of fi
via the minimum reconstruction-error criteria. Specifically,

let ”( ) represent a dip-combination of the dip, components
dy

in fi. For the k-th combination, k=1, ..., ( i ) we first re-

construct A ( /Ll(s )) and then find the estimate of S as S *)
[A ( ﬂl({f ) )} - X. The cilb most accurate estimates are deter-

mined as

2
Sl T
F

‘X A(a)-5

fty, = arg min

k=1,..., (dlb)

where || denotes the Frobenius norm of a matrix.

In general dub < d, and hence the number of combinations (‘Z‘l‘:”)

increases at a rate no more than (dub - dlb)-order polynomially with

d. Since typically (Jub - dlb) is small, the above algorithm can be
implemented at a reasonable computational cost.

3.1. Choice of Under- and Over-enumerators

The choice of a good under-enumerator depends on the accuracy
requirement which is application dependent. The higher the esti-
mation accuracy requirement is, the more conservative enumerator
should be chosen. Using an enumerator that is more conservative in
selecting the number of signals such as EDC leads to a decrease in
the number of available estimates, but meanwhile an improvement
in the estimation accuracy is expected.

On the other hand, according to Conjecture 1, a good over-
enumerator should be able to return a signal number estimate that
satisfies deg < ciub < d. However, this condition can be relaxed to
def < dub < d+ A, where A is a small positive integer, e.g., 1 or 2.
It is because simulations show that the accuracy of the final Jlb es-
timates obtained in the proposed algorithm is much less sensitive to
overestimation of the EMO than to underestimation of it by the cho-
sen over-enumerator, even if Jub slightly exceeds d. In this sense,
the AIC is a good option for the over-enumerator.

4. SIMULATION RESULTS

The BIC and EDC are used as under-enumerators, while for the over-
enumerator two schemes are employed: 1) AIC; 2) Combination



Table 1. Frequency estimation error in degrees (°) in ESPRIT when the correct number of signals, the number of signals estimated by AIC
and BIC are used. M =10, N =100, d = 5, p = [47,125,-11,38,135]°, and equal-power sources with SNR = 5 dB.

L 47 125 -11 38 135 RMSE | Bestdgic | Bestdrpc
fi (d=5) 745 (-121.5) | 94.1(-30.9) | -12.8 (-1.8) | 40.3(2.3) | 130.4(-4.6) || 56.12 | 3.15 2.08
fui (datc =4) | x 101.8 (-23.2) | -11.6 (-0.6) | 41.3(3.3) | 130.1(-4.9) || 11.97 | 3.43 2.35
fii (dpic = 3) | x x 116 (-0.6) | 42.1(4.1) | 130.8 (-4.2) || 3.42 3.42 2.96
fti (depc =2) | x X X 34.5(-3.5) | 130.7(-4.3) || 3.91 x 391
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Fig. 1. Determination of effective model order. M =10, N =50, d =5. 8 = [17,-29,56,22,55]° and n = 2.57°.

of AIC and DFEC, namely, choose the estimate of AIC or DFEC,
whichever is larger. The DFEC is an empirical order selection rule
that has been shown to be good at detecting weak signals [4].

‘We consider a scenario where the sources have equal powers and
closed-spaced sources are present, with @ = [17,-29, 56, 22,55]°.
The numbers of sensors and snapshots are M = 10, N = 100. For
widely-spaced sources with distinct powers, similar results are ob-
tained. Therefore, they are not included here to save space. The
results are plotted for various SNRs, and for each SNR, 50000 inde-
pendent realizations are conducted.

Fig. 2(a) and (b) show the RMSE:s of the frequency estimates ob-
tained by ESPRIT, where BIC and EDC are respectively used as the
under-enumerator. We see that using the correct signal number for
parameter estimation in the threshold region results in large RMSE
of the estimated parameters that is far above the CRB, which implies
that inaccurate estimates are present.

In Fig. 3, the EMO and the mean values of the signal number
estimate by various order selection rules are shown and compared.
We see that the AIC underestimates the correct number of signals but
overestimates the EMO. Correspondingly, in Fig. 2, the RMSE of
the parameter estimates obtained using the estimated signal number
by AIC, denoted as daic, in ESPRIT drops down because part of
inaccurate estimates have been excluded from its estimates, but may
be still too large to satisty the accuracy requirement in applications.

On the other hand, the BIC underestimates the EMO, and there-
fore, the RMSE drops down below the CRB since inaccurate esti-
mates have been excluded. Nevertheless, in Fig. 2(a) we see that,
the RMSE of the obtained estimates by passing dgic to ESPRIT is
not as small as that of the “BEST: dpic”, which corresponds to the

dpic most accurate components of f, particularly in the lower half
of the threshold region. Here i = [fi1,...,[iq] denotes the vec-

tor of parameter estimates obtained by passing the correct number
of signals d to ESPRIT. As mentioned before, this is because using
an underestimated number of signals less than EMO renders strong
signals being treated as noise and this harms the estimation of other
strong signals which results in an accuracy loss.

By combining the BIC with AIC, the RMSE is significantly re-
duced, by a factor up to 78%. In addition, by combining the BIC
with both AIC and DFEC, the RMSE is further reduced, particularly
in the lower half of the threshold region, where the DFEC is more
apt to overestimate the EMO than the AIC, as shown in Fig. 3. This
is consistent with [4], showing the superiority of DFEC in detecting
weak signals.

Similar observations are also obtained when the EDC is used as
the under-enumerator. However, note that since the EDC is more
conservative in selecting the number of signals than BIC, the RMSE
of the JEDC most accurate components of £ is smaller than that of
the cZB[c most accurate ones, which is seen by comparing the “BEST:
chlc” curve in Fig. 2(a) and “BEST: CZEDc” curve in Fig. 2(b). Nev-
ertheless, the accuracy loss due to underestimation of number of
signals is more significant, which is reflected by the enlarged gap
between the RMSE of the depc estimates obtained by passing depc
to ESPRIT and that of the “BEST: dgpc” curve and almost cancels
out all the potential gains made by reducing the number of estimates
through the use of the more conservative EDC. By combining the
EDC with AIC, the performance gap becomes much smaller, with
the RMSE being reduced by up to 90% compared to the 78% for the
BIC case. Moreover, the resultant dgpc estimates with improved ac-
curacy are more accurate than the accuracy-improved dpic estimates
in Fig. 2(a).
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Fig. 3. EMO and mean values of signal number estimate by under-
and over-enumerators. The parameter settings are the same as those
in Fig. 2.

5. CONCLUSION

In challenging scenarios with low SNRs or the presence of closely-
spaced sources, only part of signal parameters can be accurately es-
timated. The number of such parameter estimates is called the ef-
fective model order (EMO). In applications where false alarm and
inaccurate estimates entail much higher price than missed detection,
the EMO is preferred over the correct model order for parameter
estimation, since using the latter in a parameter estimator introduces
inaccurate estimates which incurs extra costs. However, using an un-
derestimated signal numbers in a parameter estimator causes some
strong signals to be treated as noise and hence a loss in estimation ac-
curacy. We propose to combine the under- and over-enumerators for
parameter estimation in the threshold region. Such a scheme enjoys
the benefit of the under-enumerators with only accurate estimates
while significantly alleviates the accuracy loss.
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