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ABSTRACT

We address the beamforming problem for maximizing the
sum rate of a multi-operator two-way relay (TWR) network
subject to the constraint on the total relay transmit power.
This scenario is also known as relay sharing for multi-way
relaying or TWR for multiple operators. The relay is as-
sumed to be equipped with multiple antennas, and it uses the
amplify-and-forward relaying strategy. It is shown that the
corresponding optimization problem can be represented as a
difference of convex functions (DC) programming problem
which is NP-hard in general. Nevertheless, we develop an
efficient polynomial time algorithm to solve the problem ap-
proximately. The performance comparison of the proposed
polynomial time DC (POTDC) inspired algorithm to the ex-
isting state-of-the-art algorithms demonstrate that the pro-
posed algorithm outperforms the existing algorithms espe-
cially in the case of non-symmetric networks.

1. INTRODUCTION

Relaying, as a mean of reducing the deployment cost, en-
hancing the network capacity, and mitigating shadowing ef-
fects, has strong potentials for future wireless networks. Al-
though the traditional one-way relaying suffers from the half-
duplex constraint and cannot utilize the radio resources in
an efficient manner, two-way relaying (TWR) enhances the
spectral efficiency and, thus, provides an attractive alterna-
tive [1]. Two relaying strategies are well studied, namely,
amplify-and-forward (AF) and decode-and-forward (DF).

Compared to the DF strategy, the digital AF strategy1 is of
a higher practical interest since it yields a much smaller de-
lay and has a lower complexity [1]. Thus, it is also adopted
in this paper.

Research on beamforming and power allocation algo-
rithms for AF TWR ranges from the case of multiple single-
antenna AF relays [2] to the multi-antenna relaying case [3]-
[5]. Several linear preprocessing techniques have been pro-
posed for the single-pair as well as multi-pair AF TWR [3],
[4], [6]. The beamforming design for a multi-operator re-
lay sharing scenario has also been considered in [8], where

This work was supported in parts by the Natural Science and Engineer-
ing Research Council (NSERC) of Canada and by the Graduate School on
Mobile Communications (GSMobicom), Ilmenau University of Technology,
which is partly funded by the Deutsche Forschungsgemeinschaft (DFG).
This work was partly funded by the European Union FP7-ICT project EM-
PhAtiC (http://www.ict-emphatic.eu) under grant agreement no. 318362.

1By “digital” we mean that the signal processing is performed in the base
band.

a sub-optimal algebraic algorithm has been proposed to ac-
complish the resource sharing by exploiting the multiple an-
tennas at the relay.

In this paper, we address the beamforming design prob-
lem to maximize the sum rate of the multi-operator TWR
with a multiple-input multiple-output (MIMO) AF relay sub-
ject to the relay transmit power constraint [9]. We first show
that the corresponding optimization problem is the differ-
ence of convex functions (DC) programming problem which
is non-convex and NP-hard in general. Afterwards, we de-
rive an efficient polynomial time convex optimization-based
algorithm to solve the problem approximately. This algo-
rithm can be viewed as an extension of the POlynomial Time
DC (POTDC) method which we recently proposed in [10] to
maximize the sum rate in AF TWR with multiple antennas at
the relay and just a single pair of users. For the latter prob-
lem, the POTDC algorithm, one step of which is based on
semidefinite programming (SDP) relaxation, is exact, while
in the case of multiple operators (multiple pairs of users that
share the same relay), the randomization procedure has to
be used that makes it approximate. To further evaluate the
proposed algorithm, we compare its performance to the per-
formance of some state-of-the-art algorithms and show that
the proposed algorithm outperforms the existing algorithms
especially in the case of non-symmetric networks.

2. DATA MODEL

The scenario under investigation is the same as in [8]. Pairs
of users belonging to L different operators communicate with
each other. However, due to the poor quality of the direct
channels between these pairs of users, they can only com-
municate with the help of the relay. Each user has a single
antenna and the relay is equipped with MR antennas. We as-
sume that the channel is flat fading. The channel between
the kth user of the ℓth operator and the relay is denoted by

hhh
(ℓ)
k ∈ C

MR . Here, the index k ∈ {1,2} is used to enumer-
ate users and the index ℓ ∈ {1, . . . ,L} is used to enumerate
operators.

The adopted AF-based transmission protocol consists of
two transmission phases. In the first phase, all the users

transmit their data simultaneously to the relay. Let x
(ℓ)
k be

the transmitted symbol of the kth user of the ℓth operator,
which is independently distributed with zero mean and vari-

ance P
(ℓ)
k . The received signal vector at the relay is then given
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as

rrr =
L

∑
ℓ=1

2

∑
k=1

hhh
(ℓ)
k x

(ℓ)
k +nnnR ∈ C

MR (1)

where nnnR ∈C
MR denotes the zero-mean circularly symmetric

complex Gaussian (ZMCSCG) noise vector and E{nnnRnnnH
R}=

σ2
RIIIMR

with IIIM denoting an M×M identity matrix.
In the second phase, the relay amplifies the received su-

perposition of signals and then forwards it to all the users
simultaneously. Then the signal transmitted by the relay can
be expressed as

r̄rr = GGGrrr (2)

where GGG ∈ C
MR×MR is the relay amplification matrix. Since

the total transmit power at the relay is limited, the transmit
power constraint at the relay must be fulfilled so that

E{‖r̄rr‖2}=
L

∑
ℓ=1

2

∑
k=1

P
(ℓ)
k ‖GGGhhh

(ℓ)
k ‖2 +σ2

R‖GGG‖2
F ≤ PR (3)

where PR denotes the total power at the relay, E{·} stands for
the expectation operator, and the Euclidean norm of a vector
and the Frobenius norm of a matrix are denoted by ‖ · ‖ and
‖ · ‖F, respectively.

For notational simplicity, we assume that the reciprocity
between the first- and second-phase channels holds. This as-
sumption is fulfilled in a time-division duplex (TDD) system

if the RF chains are calibrated.2 The received signal y
(ℓ)
k for

the kth user of the ℓth operator can be written as

y
(ℓ)
k = hhh

(ℓ)T

k r̄rr+n
(ℓ)
k

= hhh
(ℓ)T

k GGGhhh
(ℓ)
3−kx

(ℓ)
3−k

︸ ︷︷ ︸

desired signal

+hhh
(ℓ)T

k GGGhhh
(ℓ)
k x

(ℓ)
k

︸ ︷︷ ︸

self-interference

+ ∑
ℓ̄6=ℓ

k̄={1,2}

hhh
(ℓ)T

k GGGhhh
(ℓ̄)

k̄
x
(ℓ̄)

k̄

︸ ︷︷ ︸

inter-operator interference

+hhh
(ℓ)T

k GGGnnnR +n
(ℓ)
k

︸ ︷︷ ︸

effective noise

(4)

where n
(ℓ)
k denotes the ZMCSCG noise symbol with variance

σ
(ℓ)2

k and {·}T stands for transpose.
Assuming that perfect channel knowledge can be ac-

quired at each user, the self-interference term can be sub-

tracted 3. Denote η
(ℓ)
k as the signal-to-interference-plus-

noise ratio (SINR) at the kth user of the ℓth operator, which
is defined as

η
(ℓ)
k =

P
(ℓ)
3−k|hhh

(ℓ)T

k GGGhhh
(ℓ)
3−k|2

∑
ℓ̄6=ℓ

k̄={1,2}

P
(ℓ̄)

k̄
|hhh(ℓ)

T

k GGGhhh
(ℓ̄)

k̄
|2 +σ2

R‖hhh
(ℓ)T

k GGG‖2 +σ
(ℓ)2

k

. (5)

Applying the vec{·} operator that stacks the columns of a
matrix into a vector, the actual relay transmit power (3) and

2Note that our method is not limited to the reciprocity assumption which
is considered only for notation simplicity.

3In practice the channel knowledge can be estimated, for example, using
the method discussed in [8].

the SINR (5) can be expressed as

E{‖r̄rr‖2}= gggHCCCggg (6)

and

η
(ℓ)
k =

gggHDDD
(ℓ)
k ggg

gggHEEE
(ℓ)
k ggg+σ

(ℓ)2

k

(7)

respectively, where ggg = vec{GGG}, {·}H stands for the Hermi-
tian transpose, and as shown in [8]

CCC = ∑
k,ℓ

P
(ℓ)
k ((hhh

(ℓ)
k hhh

(ℓ)H

k )T ⊗ IIIMR
)+σ2

RIIIMR

DDD
(ℓ)
k = P

(ℓ)
k (hhh

(ℓ)T

3−k ⊗hhh
(ℓ)T

k )H(hhh
(ℓ)T

3−k ⊗hhh
(ℓ)T

k )

EEE
(ℓ)
k = ∑

k̄,ℓ̄6=ℓ

P
(ℓ̄)

k̄
(hhh

(ℓ̄)T

k̄
⊗hhh

(ℓ)T

k )H(hhh
(ℓ̄)T

k̄
⊗hhh

(ℓ)T

k )

+ σ2
R(IIIMR

⊗ (hhh
(ℓ)
k hhh

(ℓ)H

k )T). (8)

Note that the DDD
(ℓ)
k ∈C

M2
R×M2

R are positive semidefinite matri-

ces and the {CCC,EEE
(ℓ)
k } ∈ C

M2
R×M2

R are positive definite matri-
ces, ∀k, ℓ.

The overall sum rate of the system described above can
be expressed as

Rsum =
1

2

L

∑
ℓ=1

2

∑
k=1

log2(1+η
(ℓ)
k ), (9)

where the factor 1/2 is due to the two transmission phases
(half duplex).

Our goal is to find the relay amplification matrix GGG which
maximizes the system sum rate subject to the relay transmit
power constraint.

3. SOLUTION VIA POTDC

Mathematically, the constrained sum rate maximization
problem for our system can be formulated as

max
ggg

1
2

L

∑
ℓ=1

2

∑
k=1

log2

(

1+
gggHDDD

(ℓ)
k ggg

gggHEEE
(ℓ)
k ggg+σ

(ℓ)2

k

)

subject to gggHCCCggg ≤ PR. (10)

It can be easily seen that the inequality constraint in (10) has
to be satisfied with equality at optimality. Otherwise, the op-
timal ggg can be scaled up to satisfy the constraint with equal-
ity while increasing the objective function. Using this ob-
servation, the relay transmit power constraint in (10) can be
rewritten as equality constraint.

Using such an equality constraint, changing to the natural

logarithm, and also omitting the constant 1
2

in the objective
function, the constrained optimization problem (10) can be
turned into the following unconstrained optimization prob-
lem

max
ggg

L

∑
ℓ=1

2

∑
k=1

log




1+

gggHDDD
(ℓ)
k ggg

gggHEEE
(ℓ)
k ggg+gggH σ

(ℓ)2

k
PR

CCCggg




 . (11)
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Moreover, after some straightforward algebra, the problem
(11) can be shown to be equivalent to the following optimiza-
tion problem

max
ggg

log

(
L

∏
ℓ=1

2

∏
k=1

gggHAAA
(ℓ)
k ggg

gggHBBB
(ℓ)
k ggg

)

(12)

where {AAA
(ℓ)
k ,BBB

(ℓ)
k } ∈ C

M2
R×M2

R are positive semidefinite ma-
trices defined as

AAA
(ℓ)
k = EEE

(ℓ)
k +

σ
(ℓ)2

k

PR
CCC+DDD

(ℓ)
k

BBB
(ℓ)
k = EEE

(ℓ)
k +

σ
(ℓ)2

k

PR
CCC. (13)

The problem (12) is a homogeneous quadratically con-
strained quadratic programming (QCQP) problem which is
NP-hard in general.

Introducing the new notation XXX = ggggggH and taking the
logarithm of the objective function, the problem (12) can be
equivalently written as

max
XXX

L

∑
ℓ=1

2

∑
k=1

(log(Tr{AAA
(ℓ)
k XXX})− log(Tr{BBB

(ℓ)
k XXX}))

subject to rank(XXX) = 1

XXX � 000 (14)

where Tr{·} and rank{·} denote the trace and rank of a ma-
trix, respectively.

Moreover, using SDP relaxation, i.e., removing the non-
convex rank-1 constraint in (14), the relaxed problem can be
shown to be a DC programming problem, which is still non-
convex. Hereafter, for notational simplicity, we define an

index m to substitute the indices
(ℓ)
k such that m = 2(ℓ−1)+

k,∀k, ℓ (i.e., m ∈ {1,2, · · · ,2L}). Then the relaxed problem
(14) with new simplified indices can be rewritten as

max
XXX ,{αm,βm}

log(Tr{AAA1XXX})− log(Tr{BBB1XXX})+
2L

∑
m=2

log(αm)

−
2L

∑
m=2

log(βm)

subject to Tr{AAAmXXX}= αm, m = 2,3, · · · ,2L

Tr{BBBmXXX}= βm, m = 2,3, · · · ,2L

XXX � 000. (15)

Due to the Rayleigh-quotient structure of (12), the problem
does not change by setting gggHBBB1ggg = Tr{BBB1XXX} = 1. Fur-
thermore, the objective function in (15) turns into a convex
function by replacing the concave elements, i.e., the elements
with the minus sign by scalar variables. Then the reformu-
lated problem, which is equivalent to (15), is written as

max
XXX ,{αm,βm,tm}

log(Tr{AAA1XXX})+
2L

∑
m=2

log(αm)−
2L

∑
m=2

tm

subject to Tr{AAAmXXX}= αm, m = 2,3, · · · ,2L

Tr{BBBmXXX}= βm, m = 2,3, · · · ,2L

log(βm)≤ tm, m = 2,3, · · · ,2L

Tr{BBB1XXX}= 1, XXX � 000. (16)

As compared to the problem (15) with non-convex DC-
type objective function, the non-convexity in the equiva-
lent problem (16) is localized in the inequality constraints
log(βm) ≤ tm, m = 2,3, · · · ,2L. To deal with these non-
convex constraints, we propose to use a linear approxima-
tion of the log function, e.g., the second order Taylor series
of the log function, which uses the same philosophy as the
original POTDC algorithm in [10]. The second order Taylor
polynomial approximation of log(β ) at β0 is defined as

log(β )≈ log(β0)+
β −β0

β0
. (17)

Using (17), the optimization problem (16) can be reformu-
lated as

max
XXX ,{αm,βm,tm}

log(Tr{AAA1XXX})+
2L

∑
m=2

log(αm)−
2L

∑
m=2

tm

subject to Tr{AAAmXXX}= αm, m = 2,3, · · · ,2L

Tr{BBBmXXX}= βm, m = 2,3, · · · ,2L

log(β0,m)+
βm−β0,m

β0,m
≤ tm, m = 2,3, · · · ,2L

Tr{BBB1XXX}= 1, XXX � 000. (18)

It can be seen that for a given set of initial values
{β0,2,β0,3, · · · ,β0,m}, the problem (18) is an SDP problem
that can be solved efficiently using the interior-point algo-
rithms if it is feasible [11]. Since the best set of initial val-
ues is unknown, it is natural to use an iterative method and
update the initial values in each iteration. Here, the initial

values {β
(p)
0,2 ,β

(p)
0,3 , · · · ,β

(p)
0,m} at the pth step are the optimal

values of βm which are obtained by solving the problem (18)
at the (p−1)th step. It is worth stressing that, if the problem
(18) is feasible at the pth step, then the optimal solution for

the problem (18) denoted as f ⋆
(p)

should be larger or equal
to the optimal solution for the same problem at the previ-

ous (p−1)th step, i.e., f ⋆
(p−1)

. Otherwise, if f ⋆
(p)

< f ⋆
(p−1)

,
it is contradictory to the objective function. Summarizing,
the proposed iterative algorithm for solving the optimization
problem (16) can be described as in Table 1.

It should also be stressed that the initial set of

{β
(0)
0,2 ,β

(0)
0,3 , · · · ,β

(0)
0,m} has to be feasible. Taking into account

the generalized Rayleigh quotient structure and recalling that
gggHBBB1ggg = 1, βm can be any value between the maximum and
minimum generalized eigenvalues of the matrix pair BBBm and

BBB1, i.e, βm ∈ {λmin{BBB−1
1 BBBm},λmax{BBB−1

1 BBBm}}. For example,

β
(0)
0,m can be chosen in a random way such that

β
(0)
0,m =

aaaHBBBmaaa

aaaHBBB1aaa
m = 2,3, · · · ,2L, (19)

where aaa ∈ C
M2

R ∼ C N (000, IIIM2
R
).

The algorithm in Table 1 provides only an approximate
solution to the relaxed problem (10) in terms of the matrix
variable XXX . This solution is the same as the solution of the
original problem (10) only if XXX is a rank-1 matrix. In other
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Table 1: Algorithm I: Iterative algorithm for solving the op-
timization problem (16)

Initialization step: input: AAA1, BBB1, AAAm, BBBm,

set {β
(0)
0,2 ,β

(0)
0,3 , · · · ,β

(0)
0,m}, f ⋆

(0)
maximum iteration number

Nmax and the threshold value ε .
Main steps:

1: for p = 1 to Nmax do
2: Solve the problem (18) in order to find the opti-

mal value f ⋆
(p)

and β
(p)
m .

3: β
(0)
0,m = β

(p)
m , m = 2,3, · · · ,2L

4: if

∣
∣
∣ f ⋆

(p) − f ⋆
(p−1)

∣
∣
∣≤ ε then

5: break
6: end if
7: end for

Table 2: Algorithm II: Iterative algorithm for approximately
solving the problem (10)

Initialization step: input: AAA1, BBB1, AAAm, BBBm,

set {β
(0)
0,2 ,β

(0)
0,3 , · · · ,β

(0)
0,m}, f ⋆

(0)
, Rsum,0, maximum iteration

number Nmax, Niter and the threshold value ε .
Main steps:

1: Solve problem (16) finding XXX with arbitrary rank
2: Calculate the eigen-decomposition of XXX as XXX =

UUUΣΣΣUUUH;
3: for j = 1 to Niter do

4: Generate ĝgg j = UUUΣΣΣ1/2zzz j where zzz j ∈ C
M2

R ∼
C N (000, IIIM2

R
).

5: g̃gg j =
ĝgg j

√
PR

√

ĝggH
j CCCĝgg j

.

6: Insert g̃gg j into (9) to calculate Rsum, j.

7: if Rsum, j > Rsum,( j−1) then
8: gggopt = g̃gg j.

9: end if
10: end for

words, ĝgg is optimal for (10) only if there exists XXX⋆ = ĝggĝggH,
where XXX⋆ is the solution obtained based on the algorithm
in Table 1. However, according to [12] (Theorem 3.2 and
Corollary 3.4), there is no guarantee that the matrix XXX found
using the algorithm in Table 1 has rank-1. Indeed, the lat-
ter would be guaranteed only if the number of constraints
in the SDP relaxed optimization problem would be less or
equal to 3. In our problem, the number of constraints is
clearly larger than 3 when (L ≥ 2), i.e., when the number
of operators is larger than one. For such a situation, a good
rank-1 approximation can be obtained by using the random-
ization techniques [13]. Thus, using also randomization for
obtaining rank-1 approximate solution to the problem (10),
the overall algorithm for finding an approximate solution to
the sum-rate maximization problem in multi-operator TWR
networks with AF relay equipped with multiple antennas can
be summarized as in Table 2.

4. SIMULATIONS

In this section, the performance of the proposed algo-
rithms is evaluated via Monte-Carlo simulations. They

are also compared to other methods, namely, the projec-
tion based separation of multiple operators (ProBaSeMO)
scheme (specifically the two variations block diagonalization
(BD) together with algebraic norm-maximizing (ANOMAX)
scheme (BA) and regularized BD (RBD) together with rank-
restored ANOMAX scheme (RR)) in [8] and the MMSE

method in [7]. The simulated MIMO flat fading channels hhh
(ℓ)
k

are spatially uncorrelated Rayleigh fading channels. They
are fixed during two time slots. The transmit power at each

user and at the relay are identical and P
(ℓ)
k = PR = 1, ∀k, ℓ.

The noise variance at each user and at the relay are also iden-

tical, i.e., σ2
R = σ

(ℓ)
k

2
= σ2

n , ∀k, ℓ. For the ProBaSeMO algo-
rithms, the weighting factor β is set to 0.5 in all simulations
[8]. All the simulation results are obtained by averaging over
1000 channel realizations.

The ProBaSeMO scheme is selected for the comparison
because it outperforms the other sub-optimal designs in a
symmetric scenario as shown in [8], e.g., the MMSE method
in [7]. Moreover, it has much lower computational com-
plexity especially when compared to the iterative solution
inspired by the power method [8]. The complexity of the
ProBaSeMO schemes can be roughly estimated as follows.
For L pairs ProBaSeMO requires L singular value decompo-
sitions (SVDs) of complex matrices of size MR × 2(L− 1)
and L SVDs of complex matrices of size M2

R × 2. Assum-
ing that the SVD of a M ×N real matrix has the complexity
of O(MN2) and taking into account that a M ×N complex
matrix can be written equivalently as a 2M × 2N real ma-
trix, then the complexity of ProBaSeMO can be estimated as
O(L(32M3

R + 32MR(L− 1)2)). The complexity of the pro-
posed POTDC-type algorithm is a product of a number of re-
quired iterations to the complexity of solving the SDP prob-
lem (18), which is higher than the complexity of the SVD.
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Figure 1: Sum rate comparison of ProBaSeMO ({BA, RR})
and POTDC approaches for L = 2 in a symmetric scenario,
where each user in the network has equal distance to the re-
lay.

Figure 1 demonstrates the sum rate comparison of the
ProBaSeMO schemes and the proposed POTDC approach in
a symmetric scenario. That is, each user has equal distance
to the relay. The proposed POTDC only slightly outperforms
the ProBaSeMO schemes. When the noise variance is small
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and the number of antennas at the relay is large, the perfor-
mance difference almost vanishes.
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Figure 2: Sum rate comparison of ProBaSeMO ({BA, RR}),
MMSE [7], and POTDC approaches for MR = 4 and L = 2
in an asymmetric scenario.
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Figure 3: Sum rate comparison of ProBaSeMO ({BA, RR}),
MMSE [7], and POTDC approaches for MR = 8 and L = 2
in an asymmetric scenario.

However, the superiority of the proposed POTDC ap-
proach is revealed in a non-symmetric scenario, i.e., when
the users have different distances to the relay. To show this,

we define a path loss model PL = 20log10(d
(ℓ)
k ) where d

(ℓ)
k is

the normalized distance between the relay and the kth user of
the ℓth operator. For simplicity, we further assume an inter-

operator symmetry, i.e., d
(ℓ)
1 = d1 and d

(ℓ)
2 = d2 ∀ℓ. The near-

far (N/F) ratio is defined as d2/d1. As shown in Figures 2
and 3, compared to the POTDC approach, the ProBaSeMO
scheme and the MMSE method in [7] suffer more from the
asymmetry of the system especially when the near-far ra-
tio is far away from 1. When the number of antennas at
the relay increases, the performance difference between the
ProBaSeMO approach and the POTDC approach is even en-
larged.

5. CONCLUSION

This paper addresses the beamformer design to maximize the
sum rate of a multi-operator AF TWR network with multiple
antennas at the relay subject to the constraint on the total
relay transmit power has been addressed. The corresponding
optimization task has been represented as a DC programming
problem which is NP-hard in general. To solve such a prob-
lem approximately, the efficient polynomial time algorithm
POTDC has been extended to the multi-operator case. It has
been demonstrated in terms of simulations that the proposed
algorithm performs better than the existing state-of-the-art
algorithms especially in the case of non-symmetric networks.
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