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ABSTRACT

It is proposed to isolate the computation of the scaling ma-
trix in CP tensor decompositions. This has two implications.
First, the conditioning of the problem shows up explicitly, and
could be controlled via a constraint on the so-called coher-
ences. Second, a performance measure concerning only the
factor matrices can be exactly calculated, and does not present
the optimistic bias of the minimal error generally utilized in
the literature. In fact, for tensors of order d, it suffices to
solve a degree-2 polynomial system in d variables. We subse-
quently give an explicit solution when d = 3.

Index Terms— Blind ; Source separation ; Data mining ; Iden-
tification ; Array ; Tensor ; CP ; Canonical polyadic ; Candecomp ;
Parafac ; Performance ; Coherence

1. INTRODUCTION

Tensor decompositions are now seen as promising tools in
data mining [1, 2, 3] and signal processing [4, 5, 6, 7], to
cite a few. In [4] for instance, a deterministic approach has
been proposed, which permits not only to work with short
data lengths, to localize more sources than sensors, but also
to extract source copies for free.

In tensor-based approaches, it is well known that factor
matrices are identified up to column scaling. This indetermi-
nacy is complicated to take into account because of a con-
straint: the product of all scaling matrices should be equal
to identity. For this reason, only approximate performance
indices have been used so far, by simply ignoring the latter
constraint. In this paper, we concentrate on calculating an
exact performance index, and we subsequently show that the
usual approximate index can be significantly optimistic. This
is illustrated by computer experiments involving three decom-
position algorithms, including two new ones, which are inter-
esting in and of themselves.

∗Work funded by the European Research Council under the European
Community’s Seventh Framework Programme FP7/2007–2013 Grant Agree-
ment no. 320594.
†The 2nd and 3rd authors contributed while visiting Gipsa-Lab.

2. NOTATION

In the following, vectors will be denoted by bold lowercases,
e.g. a, whereas matrices or higher-order arrays will be de-
noted by bold uppercases, e.g. A. Moreover, ar will de-
note the rth column of matrix A, diagλ the diagonal matrix
whose diagonal entries are λi, 1 will represent a vector con-
taining ones.

We are interested in decomposing a 3rd order tensor T as:

T =

R∑
r=1

λr E(r) (1)

where E(r) are decomposable tensors, that is, E(r) =
ar ⊗⊗⊗ br ⊗⊗⊗ sr, where ⊗⊗⊗ denotes the tensor (outer) product,
and R is the tensor rank. Vectors ar (resp. br and sr) live
in a linear space of dimension I (resp. dimension J and K).
Once bases of these three spaces are fixed, tensor decomposi-
tion (1) is equivalent to the decomposition of the I × J ×K
array of coordinates:

Tijk =

R∑
r=1

λr Air Bjr Skr (2)

where Air (resp. Bjr or Skr) denote the entries of vector
ar (resp. br or sr). Equation (1) is often referred to as the
Canonical Polyadic decomposition (CP)1 of T. Even when
the CP is unique, the explicit writing of decomposable ten-
sors in given bases as in (2) is subject to scale indetermina-
cies. By normalizing the R columns of matrices A, B and S,
i.e. vectors ar, br and sr, and by pulling real positive factors
λr outside the product, these indeterminacies are clearly re-
duced to unit modulus but are not completely fixed, hence the
difficulty in estimating the identification error of factor matri-
ces A, B and S. The purpose of Section 4 is precisely to fix
these 3R complex phases (reducing to signs in the real case).

3. EXISTENCE AND UNIQUENESS

The goal is to identify all parameters in the right hand side of
(2), given the whole array T. According to existing results [8,

1also sometimes called Candecomp/Parafac in Psychometry.

EUSIPCO 2013 1569744559
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9], uniqueness2 of the exact CP decomposition (2) is generally
ensured when I+J+K ≥ 2R+2 (see infra for more details);
and this condition is claimed to be only sufficient for R > 3.
However, observations are actually corrupted by noise, so that
(2) does not hold exactly.

3.1. Low rank approximation

The natural idea is then to fit model (2) by minimizing the
error

Υ(A,B,S; Λ) = ‖T− (A,B,S) ·Λ‖2 (3)

where Λ denotes theR×R×R diagonal array whose diagonal
entries are λr, and where (A,B,S) · Λ is an Ersatz for the
three-way tensor of coordinates

∑
r λr AirBjrSkr.

Up to now, the choice of the norm has not been specified,
but we shall subsequently use the Frobenius norm, for either
matrices or tensors: ‖T‖2 =

∑
ijk |Tijk|2, and the L2 norm

for vectors.
Minimizing error (3) means finding the best rank-R ap-

proximate of T and its CP decomposition. However, as al-
ready pointed out in [10, 11] and references therein, the infi-
mum of Υ may not always be reached, even if it often is. But
this is out of the scope of the present paper.

3.2. Coherence

In compressed sensing [12, 13] the coherence of a set of unit
norm vectors is defined as the maximal value of the modulus
of cross scalar products:

µA = sup
p 6=q
|aH
paq| (4)

We define this way coherences µA, µB and µS associated
with matrices A, B and S, respectively, being understood that
ar, br and sr denote their columns.

Coherences play a role in the conditioning of the problem.
To see this, suppose matrices A, B and S are given. Then the
optimal value Λo minimizing error Υ satisfies the following
linear system:

Gλo = f , (5)

where G denotes the R×R Gram matrix defined by:

Gpq = (ap ⊗ bp ⊗ sp)
H(aq ⊗ bq ⊗ sq),

λ is the R-dimensional vector with entries λr, ⊗ is the Kro-
necker product and vector f in the RHS is defined by the con-
traction fr =

∑
ijk Tijk A

∗
irB
∗
jrS
∗
kr, 1 ≤ r ≤ R. This can

be seen by expanding the Frobenius norm in (3), which is a
quadratic form in the entries of Λ, and by canceling the gra-
dient w.r.t. λ.

In view of (5), and since diagonal entries of G are equal
to 1, it is clear that imposing coherences to have a modulus
strictly smaller than 1 will permit to impose an acceptable

2Uniqueness is always understood up to matrix scale factors.

conditioning. Also note the striking fact that only the product
between coherences appears, and not coherences individually.
It turns out that this statement has deeper implications, espe-
cially in existence and uniqueness of the solution to Problem
(3), as briefly elaborated below.

3.3. Existence

It has been shown in [11, 14] that if

µAµBµS <
1

R− 1
(6)

then the infimum of (3) is reached. The reason for this is that
error (3) becomes coercive as soon as (6) is satisfied. And
since it is continuous, it must reach its minimum. We see
that this condition already gives a quantitative bound to the
conditioning of (5).

3.4. Uniqueness

Now to give a sufficient condition to uniqueness, we can rely
on Kruskal’s theorem previously quoted, which can be ex-
pressed as follows: T =

∑R
r=1 E(r) where E(r) are rank-

one tensors, admits a unique solution if

krank{A}+ krank{B}+ krank{S} ≥ 2R+ 2 (7)

where krank{·} denotes Kruskal’s rank3.
Following the lines of [12, 11, 14], one can observe that

krank{A} ≥ µ−1
A , as long as krank{A} is strictly smaller

than the column rank of A. Plugging this inequality in (7)
leads to the sufficient uniqueness condition:

µ−1
A + µ−1

B + µ−1
S ≥ 2R+ 2 (8)

4. PERFORMANCE MEASURE

As pointed out in section 2, there remains an indeterminacy
in the CP decomposition, characterized by 2R complex num-
bers of unit modulus. More precisely, let a, b and s denote
the rth column of matrices A, B and S, respectively, r being
any fixed value between 1 and R. Also denote â, b̂ and ŝ one
column of the estimated matrices entering in the CP decom-
position. It is desired to define the minimal distance:

δ(x; x̂) = min
ϕ,ψ,χ

{||a−eϕâ||2 + ||b−eψb̂||2 + ||s−eχŝ||2}
(9)

under the constraint that exp((ϕ+ ψ + χ)) = 1. For conve-
nience, x again denotes the vector [aT,bT, sT]T. It turns out
that this distance can be exactly computed. In fact, because
of the constraint, (9) involves two angles, say ϕ and ψ. An

3kA = krankA if any kA columns of matrix A are linearly indepen-
dent. This is in contrast to the usual matrix rank, where any is replaced by at
least in the definition.
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elimination is possible in the two equations defining station-
ary points, and leads to the roots of a polynomial of degree 6
in a single variable, say ϕ. By plugging back the admissible
values of ϕ in the system of two equations, corresponding val-
ues of ψ are obtained. The global minimum of (9) can hence
be efficiently calculated (see appendix for details).

We end up with the performance criterion below:

E(T; A,B,S,Λ) = min
π∈Π

R∑
r=1

δ(xr; x̂π(r)) (10)

where Π is the group of permutations of {1, 2, . . . R}. This
criterion allows to properly fix the permutation-scale ambi-
guity. In case the permutation acts in too large dimension,
greedy versions are possible to limit the exhaustive search in
the permutation group.

Surprisingly, such a performance criterion using the solu-
tion of (9) has not yet been proposed in the literature.

5. COMPUTER RESULTS

5.1. Optimization

In order to illustrate the interest of our performance measure,
we shall report the performances of three simple algorithms
computing the approximate CP decomposition: Algorithm 0
is a gradient descent, where variables A, B and S are free,
and Λ = I; Algorithm 1 is a projected gradient with an ap-
proximate value of Λ; Algorithm 2 is a projected gradient
with the optimal value of Λ given by (5). Note that the focus
is on the performance measure, not on algorithms. For the
sake of clarity, Algorithms 1 and 2 are detailed below.

ALGORITHM 1.
1. Initialize (A(0),B(0),S(0)) to full-rank matrices with unit-

norm columns, and set λ(0) = 1.
2. For k ≥ 1 and subject to a stopping criterion, do

(a) Compute the descent direction as the gradient w.r.t. X:
D(k) = −∇Υ(X(k − 1);λ(k − 1))

(b) Compute a stepsize `(k)

(c) Update X(k) = X(k − 1) + `(k)D(k)

(d) Extract the 3 blocks of X(k): A(k), B(k) and S(k),
and store the norm of their columns into λA, λB , λS

(e) Normalize them to unit-norm columns as
A(k) :=A(k) diag(λA)−1, B(k) :=B(k) diag(λB)−1

and S(k) :=S(k) diag(λS)−1

(f) update λ(k) = λ(k − 1) ∗ λA ∗ λB ∗ λS

where ∗ denotes the entry-wise product.

ALGORITHM 2.
1. Initialize (A(0),B(0),S(0)) to full-rank matrices with unit-

norm columns.
2. Compute G(0) and f(0), and solve G(0)λ(0) = f(0) for λ,

as defined in Section 3.2.
3. For k ≥ 1 and subject to a stopping criterion, do

(a) Compute the descent direction as the gradient w.r.t. X:
D(k) = −∇Υ(X(k − 1);λ(k − 1))

(b) Compute a stepsize `(k)

(c) Update X(k) = X(k − 1) + `(k)D(k)

(d) Extract the 3 blocks of X(k): A(k), B(k) and S(k)

(e) Normalize the columns of A(k), B(k) and S(k)

(f) Compute G(k) and f(k), and solve G(k)λ(k) = f(k)
for λ, according to (5).

The gradient expressions4 necessary to determine the de-
scent direction D(k) are of the form:

∂Υ

∂A
= 2 AM− 2N

where Mpq
def
=

∑
jk λpBjpSkpS

∗
kqB

∗
jqλ
∗
q and Nip

def
=∑

jk TijkB
∗
jpS
∗
kpλ
∗
p. Expressions for gradients w.r.t. B or

S are similar.

0 10 20 30 40 50 60 70 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

SNR

||
A

 −
 A

||
2

 

 

Algorithm 0

Algorithm 1

Algorithm 2

Algorithm 0 with the new performance criterion

Algorithm 1 with the new performance criterion

Algorithm 2 with the new performance criterion

<

(a) Error on matrix A
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(b) Error on matrix B
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(c) Error on matrix S

Fig. 1. Matrix estimation errors, with a random tensor of size 10×
10× 10 and rank 5: (a) matrix A, (b) matrix B, (c) matrix S. Note
the 3 matrix factors typically contribute equivalently in E .

5.2. Performances

In this section, we analyze matrix estimation errors obtained
with the performance criterion proposed in (9). Two scenarii
are analyzed with random tensors of rank 5 corrupted by an
additive Gaussian noise: one with dimensions 4 × 4 × 4 and
another with dimensions 10 × 10 × 10. Factor matrices are
initialized with random values with 5 columns. The results

4Matrix gradients are written with the conventions described in [15, 16].
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were obtained from 50 Monte Carlo runs. At each run and for
every SNR value, a new noise realization is drawn.

Figures 1 and 2 report matrix estimation errors involved
in error (9) as a function of SNR. First, it can be seen that
the performance results using Algorithm 0 is poor in compar-
ison with results obtained with Algorithms 1 and 2 (curves
with stars and curves circles). This supports the idea that our
algorithms isolating the scale matrix are attractive. Second,
we check that when we do not consider the phase constraints
when calculating the performance measure, the results are
significantly more optimistic, especially at high SNR (com-
pare curves with the same color/symbol); this supports the
interest in using our performance index defined in (9).
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Algorithm 2 with new performance criterion, iteration=100
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It=100

It=600

Fig. 2. Sum E of matrix estimation errors, with a random tensor of
size 4 × 4 × 4 and rank 5. Note the asymptote depending on the
maximum number of iterations executed.

Third, to see a significant difference between Algorithms
1 and 2, it is necessary to look at the convergence speed, since
the final error is about the same (cf. Figures 1 and 2). In all
our experiments, Algorithm 2 converged faster in terms of
number of iterations; this is illustrated in Figure 3.
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Fig. 3. Typical example of reconstruction error (3) as a function of
the number of iterations, for a tensor of size 4× 4× 4 and rank 5.

6. CONCLUDING REMARKS

We have shown in Section 3.2 that, in CP tensor decomposi-
tions, the scale matrix Λ takes as optimal value a Gram matrix
controlling the conditioning of the problem. This shows that
bounding coherences would allow to ensure a minimal con-
ditioning. Next, two descent algorithms have been described
and tested, which involve a separate explicit calculation of
the scale matrix Λ. Third, this numerical approach allows
to compute a performance index, more realistic than perfor-
mance measures used in the literature which are optimistic by
construction. Future works include the development of more
efficient numerical algorithms based on the same idea, with
possibly a coherence constraint.

7. APPENDIX

In this appendix, we explain in more details how one can
obtain performance index δ, and in particular how phases
(ϕ,ψ, χ) are calculated. Setting χ = −ϕ − ψ [2π], equa-
tion (9) can be rewritten as:

δ = ||a||2 + ||â||2 + ||b||2 + ||b̂||2 + ||s||2 + ||ŝ||2

−2ρa cos(ϕ− α)− 2ρb cos(ψ − β)

−2ρs cos(ϕ+ ψ + γ)

where aHâ
def
= ρa e

α, bHb̂
def
= ρb e

β and sHŝ
def
= ρs e

γ .
Stationary points are given by the solutions of the trigono-
metric system in e.g. variables x = ϕ− α and y = ψ − β as
unknowns:

ρa sinx+ ρs sin(ϕ+ ψ + γ) = 0

ρb sin y + ρs sin(ϕ+ ψ + γ) = 0

The first simplification is achieved by noting that

ρs sin(ϕ+ ψ + γ) = −ρa sinx = −ρb sin y.

implies sin y = sinx ρa
ρb

. Now, using trigonometric identities,
we can rewrite the first equation of the trigonometric system

ρs sin(ϕ+ψ+ γ) = ρs sin(x+ y+α+β+ γ) = −ρa sinx,

as: ρa sinx = −ρs
[

sinx cos y cos(α+ β + γ)

+ sin y cosx cos(α+ β + γ)

+ cosx cos y sin(α+ β + γ)

− sinx sin y sin(α+ β + γ)
]
.

Letting cos y =
√

1− sin2 y and sin y = ρa
ρb

sinx, we obtain

ρa sinx = −ρsρa
ρb

sinx cosx cos(α+ β + γ)

+
ρsρa
ρb

sin2 x sin(α+ β + γ)

+
[
ρs sinx sin(α+ β + γ)

−ρs cosx sin(α+ β + γ)
]√

1− ρa
ρb

sin2 x.
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The goal of the next step is to eliminate the square root and to
rewrite the equation in term of variables sinx or cosx. So, let
us squaring both side of this equation and using trigonometric
identities such as cos2 x = 1+cos(2x)

2 , sin2 x = 1−cos(2x)
2 ,

cosx sinx = sin(2x)
2 and cos2(2x) + sin2(2x) = 1. Thus,

after simplification we obtain

ρ2b
2

+
1

2

(ρsρa
ρb

)2 − ρ2s
2

+
[ρ2b

2
+

1

2

(ρsρa
ρb

)2
+
ρ2s
2

cos2(α+ β + γ)− ρ2s
2

sin2(α+ β + γ)
]

cos2(2x)

+
[
2ρs cos(α+ β + γ) sin(α+ β + γ)

]√
1− cos2(2x)

+
[
2
(ρsρ2a
ρb

)
cos(α+ β + γ)

√
1− cos2(2x)

−
(ρsρ2a
ρb

)
sin(α+ β + γ)

(
1− cos(2x)

)]√1− cos(2x)

2

= 0.

In the same way as above, we squared twice both sides of the
resulting equation to eliminate the squares roots. Finally we
get an equation of degree six of the form

c0 + c1 cos(2x) + c2 cos2(2x) + c3 cos3(2x)

+c4 cos4(2x) + c5 cos5(2x) + c6 cos6(2x) = 0,

with:



c0 = c′
2
1 − c′

2
5

c1 = 2c′1c
′
4 − 2c′5c

′
7

c2 = 2c′1c
′
3 + c′

2
4 − 2c′5c

′
6 − c′27 + c′

2
5

c3 = 2c′1c
′
2 + 2c′3c

′
4 − 2c′6c

′
7 + 2c′5c

′
7

c4 = c′
2
3 + 2c′2c

′
4 − c′26 + 2c′5c

′
6 + c′

2
7

c5 = 2c′2c
′
3 + 2c′6c

′
7

c6 = c′
2
2 + c′

2
6

c′1 = c′′
2
1 + c′′

2
3 − 1

2c
′′2

4 − 1
2c
′′2

5

c′2 = − 1
2c
′′2

4 + 1
2c
′′2

5

c′3 = c′′
2
2 − c′′

2
3 + 1

2c
′′2

4 − 3
2c
′′2

5

c′4 = 2c′′1c
′′

2 + 1
2c
′′2

4 + 4
2c
′′2

5

c′5 = −2c′′1c
′′

3 + c′′4c
′′

5

c′6 = c′′4c
′′

5

c′7 = −2c′′2c
′′

3 − 2c′′4c
′′

5

and:



c′′1 = 1
2ρ

2
a + 1

2

(
ρsρa
ρb

)2

− 1
2ρ

2
s

c′′2 = − 1
2ρ

2
a − 1

2

(
ρsρa
ρb

)2

+ ρ2
s cos2(α+ β + γ)− 1

2

c′′3 = −2ρ2
s cos(α+ β + γ) sin(α+ β + γ)

c′′4 = −2
ρsρ

2
a

ρb
cos(α+ β + γ)

c′′5 =
ρsρ

2
a

ρb
sin(α+ β + γ)

Solving the sixth degree equation yields x. Replacing x
in sin y = ρa

ρb
sinx yields y.
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