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ABSTRACT
Most existing speech source separation algorithms have been
developed for separating sound mixtures acquired by using
a conventional microphone array. In contrast, little atten-
tion has been paid to the problem of source separation using
an acoustic vector sensor (AVS). We propose a new method
for the separation of convolutive mixtures by incorporating
the intensity vector of the acoustic field, obtained using spa-
tially co-located microphones which carry the direction of
arrival (DOA) information. The DOA cues from the inten-
sity vector, together with the frequency bin-wise mixing vec-
tor cues, are then used to determine the probability of each
time-frequency (T-F) point of the mixture being dominated
by a specific source, based on the Gaussian mixture mod-
els (GMM), whose parameters are evaluated and refined it-
eratively using an expectation-maximization (EM) algorithm.
Finally, the probability is used to derive the T-F masks for
recovering the sources. The proposed method is evaluated
in simulated reverberant environments in terms of signal-to-
distortion ratio (SDR), giving an average improvement of ap-
proximately 1.5 dB as compared with a related T-F mask ap-
proach based on a conventional microphone setting.

Index Terms— Acoustic vector sensor, acoustic intensity,
EM algorithm, blind source separation, direction of arrival.

1. INTRODUCTION

Speech source separation aims to estimate the desired speech
signals in the presence of other speech signals or interfering
sounds. It offers great potentials in many applications such
as automatic speech recognition, teleconferencing and hear-
ing aids. Traditionally, it is performed by using a microphone
array together with estimation techniques developed based on
the acoustic pressure measurements. Recently, a co-located
sensor structure, namely acoustic vector sensor (AVS) is em-
ployed to measure the acoustic pressure as well as to calculate
acoustic intensity [1], showing good performance on the esti-
mation of direction of arrival (DOA) [2] and speech enhance-
ment [3]. However, speech separation from sound mixtures

acquired by an AVS has not been well studied, especially, un-
der reverberant room environment.

In this paper, we propose a new method for separating re-
verberant speech mixtures by incorporating the intensity of
the acoustic field that can be estimated from AVS recordings.
Based on the acoustic intensity, we can extract the DOAs of
the sources at each time-frequency (T-F) point of the mixture.
We employ this DOA information together with the T-F bin-
wise mixing vector cue to determine the probability of each
T-F point of the mixture being dominated by a specific source,
with the assumption that the sources are sparse in the T-F do-
main. The source occupation likelihood at each T-F point is
evaluated from the mixtures based on the Gaussian mixture
models (GMM), with the model parameters evaluated and re-
fined iteratively by the expectation-maximization (EM) algo-
rithm.

The main contribution lies in the use of the acoustic inten-
sity information within the EM based probabilistic T-F mask-
ing technique for speech separation. Different from the EM
method in [4], we have incorporated the acoustic intensity
vector that allows the use of the bin-wise DOA cue. The re-
mainder of this paper is organized as follows. In Section 2, the
AVS source separation model and the estimation of DOA and
mixing vector cues based on the AVS model are introduced.
Bin-wise T-F classification by combining these two cues us-
ing the EM algorithm is discussed in Section 3. The experi-
mental setup and results are given in Section 4, followed by
conclusions in Section 5.

2. AVS BASED SOURCE SEPARATION IN THE
REVERBERANT ENVIRONMENT

In this work, we assume that the sources and the sensor are
strictly located at a 2-D (x− y) plane, i.e., the elevation angle
of the sources are zero. Therefore, only two gradient compo-
nents are included in a single AVS. As mentioned in [5], the
true acoustic vector sensor should measure the pressure gradi-
ent directly, however, the gradient value can also be estimated
indirectly by differentiating the measurements obtained from
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Fig. 1. An illustration of AVS and shoe-box room experiment
environment.

the pressure microphones, and the latter one is adopted in this
paper. The geometry forming such an AVS in a shoe-box
room is shown in Fig. 1. Three microphones are employed to
construct an acoustic vector sensor for acoustic pressure mea-
suring and pressure gradient calculation. In a noise-free room
acoustic environment, the received mixtures from the source
signals sn(t), for n = 1, . . . , N can be written as p0(t)

px(t)
py(t)

 =

N∑
n=1

 hn0 (t)
hnx(t)
hny (t)

 ? sn(t) (1)

where N is the number of sources, t is the discrete time in-
dex, ? denotes convolution, and p0(t), px(t) and py(t) are
the acoustic pressure signal received from the sensors located
at the origin, x-coordinate and y-coordinate respectively. In
(1), hn0 (t), hnx(t) and hny (t) represent the corresponding room
impulsive response (RIR) from the nth source to the sensors
cascading the direct path as well as the multipath responses.

The pressure gradient can then be obtained from the
acoustic pressure as

g(t) =

[
gx(t)
gy(t)

]
=

[
px(t)− p0(t)
py(t)− p0(t)

]
(2)

where gx(t) and gy(t) is the pressure gradient corresponding
to the x- and y- coordinates, respectively. The general form
of the speech mixtures at the output of a single AVS can thus
be constructed as [p0(t),g(t)T ]T .

The aim of blind source separation (BSS) with the AVS
settings is therefore to estimate source signals sn(t), n =
1, . . . , N , from the mixtures [p0(t),g(t)T ]T , without know-
ing RIRs, hn0 (t), hnx(t) and hny (t) [1, 6]. To achieve this, we
adopt the probabilistic T-F masking technique with the mask
estimated using DOAs and mixing vector cues, as discussed
in detail next.

2.1. Direction of arrival estimation with an AVS

In [5], Nehorai and Paldi assume that the signal behaves as a
plane wave at the sensor. With this assumption, the acoustic

(a) (b)

Fig. 2. The histogram of DOAs under (a) anechoic and (b)
reverberant (T60 = 0.35s) environments. Two speech sources
are simultaneously active at 5◦ and 65◦ respectively.

particle velocity can be expressed as

v(t) = − 1

ρ0c
g(t)� ~u (3)

where v(t) = [vx(t), vy(t)]T , � denotes the element-
wise product, ρ0 is the ambient density of the air, c is the
velocity of sound wave in the air, and ~u is an unit vector de-
notes the direction in x- and y- coordinates, which holds an
opposite direction of the DOA, i.e., ~u = [~ux, ~uy]T . The in-
stantaneous intensity vector can be denoted as the product of
the acoustic pressure and the particle velocity. By taking the
short-time Fourier transform (STFT), the T-F representation
of the intensity vector I = [Ix(ω, k), Iy(ω, k)]T can be given
as

Ix(ω, k) = − 1

ρ0c

[
<{P ∗

0 (ω, k)Gx(ω, k)}~ux
]

(4)

Iy(ω, k) = − 1

ρ0c

[
<{P ∗

0 (ω, k)Gy(ω, k)}~uy
]

(5)

where the superscript ∗ denotes conjugation, <{·}means tak-
ing the real part of its argument, ω and k are the frequency bin
and time frame indices, and P0(ω, k), Gx(ω, k), Gy(ω, k) are
the STFTs of p0(t), gx(t), gy(t) respectively. The direction of
the intensity can thus be obtained by

θ(ω, k) = arctan

[
<{j · P ∗

0 (ω, k)Gy(ω, k)}
<{j · P ∗

0 (ω, k)Gx(ω, k)}

]
(6)

Speech signal is, in general, sparse in the T-F domain [4], and
as a result, it can be assumed that each T-F unit of the mix-
ture is dominated by at most one source. The intensity direc-
tion θ(ω, k) carries the DOA information of a source signal.
By taking the histogram of θ(ω, k) over all T-F points, the
DOAs of sources, as shown in Fig. 2 (a), can be estimated
and employed to separate the speech signals, to be explained
in section 3.
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2.2. Mixing vectors estimation

Different from the conventional microphone array, both the
acoustic pressure and pressure gradient information are ob-
tained at the output of the AVS. It was found experimentally
in [6] that the performance will degrade when p0 is used in
source separation. Therefore, only the x- and y- gradient
components of the AVS outputs are used to reconstruct the
source signals. Assuming that only one source is dominant at
each T-F unit, the STFT of the observations at the kth frame
can be represented as

z(ω, k) =

N∑
n=1

ĥn(ω)sn(ω, k)

≈ ĥn(ω)sn(ω, k),∀n ∈ [1, . . . , N ] (7)

where z(ω, k) = [Gx(ω, k), Gy(ω, k)]T , ĥn(ω) = [Hn
x (ω)−

Hn
0 (ω), Hn

y (ω) − Hn
0 (ω)]T and Hn

0 (ω), Hn
x(ω), Hn

y (ω) are
the STFTs of the hn0 (t), hnx(t), hny (t) respectively, assuming a
linear time-invariant (LTI) mixing system. Each observation
vector is then normalized to remove the effect of the source
amplitude. The mixing filter coefficients, ĥn, are modeled by
a complex Gaussian density (CGD) function, given as [7]

p(z(ω, k)|ĥn(ω), γ2
n(ω)) =

1(
πγ2

n(ω)
)2

× exp

(
−||z(ω, k)− (ĥH

n (ω)z(ω, k))ĥn(ω)||2

γ2
n(ω)

)
(8)

where ĥn is the centroid with a unit norm ||ĥn(ω)||2 = 1,
and γ2

n(ω) is the variance. The CGD function is evaluated for
each observed T-F unit. The orthogonal projection of each
observation z(ω, k) onto the subspace spanned by ĥn can
be estimated by (ĥH

n (ω)z(ω, k))ĥn(ω). The minimum dis-
tance between the T-F unit z(ω, k) and the subspace is thus
||z(ω, k) − (ĥH

n (ω)z(ω, k))ĥn(ω)|| and represents the prob-
ability of that T-F point belonging to the nth source. The
probability of each T-F unit coming from source n can thus
be estimated to find out which source is dominant in that unit.

3. DOA AND MIXING VECTOR CUES BASED T-F
ASSIGNMENT WITH EM ALGORITHM

With the increase of reverberations in the room environment,
the DOA histogram will be blurred thus giving distorted di-
rection information, as shown in Fig. 2 (b). To improve the
reliability of allocating each T-F unit to a specific source, we
propose to combine the DOA cue θ(ω, k) with the T-F obser-
vations z(ω, k). A GMM is then applied to the observation
set. In GMM, a Gaussian distribution is employed for each
source n, and thus N Gaussian distributions are mixed by the
mixing weight ψn(ω). The main task is to find the model

parameters (the mean and variances) that best fit the observa-
tions {θ(ω, k), z(ω, k)}. The parameter set Θ is given by

Θ = {ξn(ω), σ2
n(ω), ĥn(ω), γ2

n(ω), ψn(ω)}

where ξn and σ2
n are the mean and variance of the DOAs, and

ĥn(ω) and γ2
n(ω) are those of the mixing vector. Given an

observation set, the parameters that maximize the log likeli-
hood

L(Θ) = max
Θ

∑
ω,k

log p(θ(ω, k), z(ω, k)|Θ)

= max
Θ

∑
ω,k

log
∑
n

[ψn(ω)N (θ(ω, k)|ξn(ω), σ2
n(ω))

×N (z(ω, k)|ĥn(ω), γ2
n(ω))] (9)

can be estimated using the EM algorithm [8] by iterating the
E-step and the M-step until convergence .

In the E-step, given the estimated parameters, Θ at the
M-step, and the observations, assuming the statistical inde-
pendence [4], the probability that the nth source presents at
each T-F unit of the mixture is calculated as

νn(ω, k) ∝ ψn(ω)N (θ(ω, k)|ξn(ω), σ2
n(ω))

×N (z(ω, k)|ĥn(ω), γ2
n(ω)) (10)

where νn(ω, k) is the occupation likelihood.
In the M-step, the DOA parameters (ξn(ω), σ2

n(ω)) and
the mixing vector parameters (ĥn(ω), γ2

n(ω)) are re-estimated
for each source using the estimated occupation likelihood
νn(ω, k) in the E-step and the observations [4]. As there
is usually no prior information about the mixing filters, for
the first iteration, we set N (z(ω, k)|ĥn(ω), γ2

n(ω)) = 1 in
equation (10) to remove the effect of the mixing vector con-
tribution. Once the mask Mn(ω, k) ≡ νn(ω, k) is obtained
after one iteration based on only the information of DOA cue,
the parameters of the mixing vectors, (ĥn(ω), γ2

n(ω)), can be
estimated from the next M-step as follows

Rn(ω) =
∑
k

νn(ω, k)z(ω, k)zH(ω, k) (11)

γ2
n(ω) =

∑
k νn(ω, k)||z(ω, k)− (ĥH

n (ω)z(ω, k))ĥn(ω)||2∑
k νn(ω, k)

(12)

ψn(ω) =
1

K

∑
k

νn(ω, k) (13)

where K is the number of all time frames, and the optimum
ĥn is the eigenvector corresponding to the maximum eigen-
value of Rn.

After the convergence of the EM algorithm, the sources
along x- and y- coordinates, i.e. Sn

x(ω, k) and Sn
y (ω, k), are

finally recovered by using the masks Mn(ω, k) (i.e. the occu-
pation likelihood described above) and the pressure gradient

3
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Fig. 3. Separation result under T60 = 0.25s: original signal
(top), mixed signal (middle), and separated signal (bottom).

values at each coordinate

Sn
x(ω, k) = Mn(ω, k)Gx(ω, k) (14)

Sn
y (ω, k) = Mn(ω, k)Gy(ω, k) (15)

The time-domain speech sources are obtained by applying
the overlapped inverse short-time Fourier transform (ISTFT)
to Sn

x and Sn
y and then adding the x and y components of each

source together.
It should be mentioned that the probabilistic classification

in this BSS method is performed for each frequency bin sepa-
rately and thus the permutation alignment over the frequency
bins is still required. Rather than using a posteriori proba-
bility based approach as in [7], due to its high computational
cost, we use the information from the DOA cue to solve the
permutation alignment problem in the first iteration of the EM
algorithm, similar to [4]. As a result, the remaining iterations
of the EM algorithm will not be affected by the permutation
problem.

4. EXPERIMENTS AND RESULTS

The proposed separation approach is tested for mixtures of
two speech sources in simulated room environments. A shoe-
box room (as shown in Fig. 1) with a dimension of 9× 5× 3
m3 is employed. The separation performance is compared
with that using the mixing vector cues obtained from the AVS
and the conventional microphone array, respectively. In each
experiment, the AVS and the microphone array are located
at the center of the room. For AVS, the microphones at x−
and y− coordinates are 0.5 cm away from the one at the ori-
gin. For the conventional microphone, we tested two different
shapes for the array setup, respectively the ‘L’-shaped array
with the same spacing (0.5 cm from the origin) between the
microphones as used in the AVS, and a uniform linear array
(ULA) composed of three microphones. The former setup
allows us to compare the performance of the proposed AVS
based source separation method with the conventional micro-
phone array based method with an identical microphone ge-
ometry and spacing. However, such a spacing (0.5 cm) is

Fig. 4. SDR versus different T60s and interference angles.

Fig. 5. PESQ versus different T60s and interference angles.

rarely used in conventional microphone arrays due to its poor
localisation performance (as shown in Fig. 4). For this rea-
son, in our experiments, a larger spacing, i.e. neighbouring
microphones spaced 5 cm apart, is used for the ULA, as done
similarly in [6].

Similar to [4], 15 utterances are randomly chosen from
the TIMIT dataset as source signals. These signals are short-
ened to 2.5 s for consistency. Moreover, all speech signals are
normalized to have the same root mean square (RMS) ampli-
tude before convolving with the RIRs, which are simulated by
using the image method [9]. Different wall reflection coeffi-
cients are set to simulate different reverberant environments,
which result in various T60s from 200 ms to 500 ms with a
step of 50 ms. To generate the mixtures, 15 pairs were cho-
sen randomly from those 15 selected utterances. The target
source was placed at 5◦ and the interferer at 50◦, 65◦ and 80◦

respectively, leading to the angle difference between the target
source and interferer θ at 45◦, 60◦, and 75◦. Both the source
and interference are located at 1 m from the microphones.

Fig. 3 gives an example of the separation result under
T60 = 250 ms. It shows that the source signal can be recov-
ered satisfactorily from the speech mixtures. The separation
performance averaged over all the 15 mixtures is evaluated
based on the signal-to-distortion ratio (SDR) [10] and per-
ceptual evaluation of speech quality (PESQ) [11]. We applied
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an FIR Wiener filter to the estimated signal with the target
signal as reference. Therefore, any energy in the estimated
signal that could be explained by a filtered version of the tar-
get signal was considered as the target signal. Any remaining
energy was considered as distortion [4]. Fig. 4 shows SDR re-
sults of the proposed AVS method and the mixing vector cues
based method [4] using the AVS and the conventional micro-
phone array, for θ at 75◦ and 60◦ respectively. Results for θ
at 45◦ are not shown here due to space constraint. Almost
under all different T60s and different interference angles, the
proposed AVS method performs better than the mixing vector
cues based methods, the SDR improvements are about 1 dB,
1.5 dB and 4 dB on average, compared with the mixing vec-
tor cues based source separation using the AVS, the ULA and
the ‘L’-shaped array, respectively. The corresponding PESQ
improvements on average are 0.08, 0.15 and 0.3 respectively,
as shown in Fig. 5.

It can be noticed from Fig. 4 and 5, the AVS based source
separation method shows better performance than that using
the conventional microphone array, however, the performance
degrades rapidly without exploiting the DOA information, es-
pecially in the highly reverberant environments. In contrast,
the proposed method which combines the DOA and mixing
vector cues together shows more remarkable performance im-
provement for all the reverberation conditions tested.

5. CONCLUSION

We have presented a new algorithm for the separation of con-
volutive mixtures by incorporating the intensity vector of the
acoustic field with probabilistic time-frequency masking. In-
stead of using a linear array, three microphones spatially co-
located are employed to measure the acoustic intensity. The
DOA cue and the mixing vector cue are then modeled by
Gaussian mixture models for source separation. An EM algo-
rithm is then introduced to estimate and refine the probability
of each T-F point of the mixture belonging to each source.
Simulation results in SDR and PESQ show the advantage of
using AVS over the conventional microphone array for source
separation, due to the high precision DOAs provided by the
AVS. Future work includes applying the proposed approach
to separate speech mixtures of more sources.
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