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ABSTRACT

In GNSS (Global Navigation Satellite System) multipath

(MP) results to be one of the main error sources affecting the

GNSS solution.

In this paper a Linear Adaptive Filter (LAF) technique [1]

is applied, based on Least Squares (LS), to estimate the MP

coefficients and delay by using a post-correlation approach.

An assumption using LAFs [1] is the noise to be a white

process, but considering post-correlation data the hypothesis

of uncorrelation among the samples is not valid. The LAF is

a stat-of-the-art technique, but not in the GNSS-MP-detection

and mitigation field. With the objective of using this method

for this purpose, the effects of the noise correlation in LS

filters are studied in this paper, when the technique is applied

to GNSS channel estimate in post-correlation. In this paper, a

preliminary analysis is done, by means of simulations. Com-

parisons are shown between data affected by correlated and

uncorrelated noise, using realistic GNSS data.

Index Terms— GNSS, multipath, adaptive filter, LS, cor-

related noise.

1. INTRODUCTION

Nowadays, due to the improvements on GNSS that allow to

mitigate most of the error sources, multipath (MP) results to

be one of the main error sources [2]. MP introduces a dis-

tortion in the correlation function, causing a shift of the zero

crossing point of the discriminator S-curve and an error on

the propagation path delay measurement. As a result, a bias

is introduced on the pseudorange estimate. MP mitigation is a

challenging topic and many techniques are proposed in litera-

ture, including novel tracking loops and antenna technologies.

In this paper we consider Linear Adaptive Filter (LAF)

techniques [1] to estimate the MP in GNSS applications.

The coefficients of a FIR (Finite Impulse Response) filter

are adapted to minimize an error function, represented by the

difference between the FIR output and a target signal to be es-

timated. In the case of GNSS the target signal is related to the

received signal. The expected ideal signal is the input of the

FIR, which computes combinations of weighted sums of de-

layed replicas of the input. The FIR outputs an estimate of the

direct path to which the MP is added, whose weights depend

on the power with which MP reaches the receiver antenna.

Different approaches are considered in literature, as in [3],

where the LAFs are applied pre-correlation. The technique

can be applied post-correlation, as proposed e.g. in [4]. LAFs

include methods based on Least Squares (LS), Least Mean

Squares (LMS) and Recursive Least Squares (RLS) [1].

We use a post-correlation approach, that include the pos-

sibility to apply the LS (Least Square) method, since the cor-

relation matrixes required by the LS can be easily modeled.

In LAFs, one of the assumption [1] is the noise to be a

white process. Considering post-correlation data, the zero-

mean condition is satisfied, but the hypothesis of uncorrela-

tion among the samples is not valid. The topic of data corre-

lation in LAFs has been considered in literature, for instance

in [5], or in [6] and [7]. The aim of this paper is to investi-

gate the problem of the noise correlation in LAFs applied to

post-correlation GNSS signals. In fact, the application of the

technique in post-correlation highly simplify the implemen-

tation, but the noise correlation must be taken into account

since one of the basic assumption of the LAF’s theory is to

have white noise.

2. SIGNAL MODEL

A GNSS signal is transmitted by using the Code Division

Multiple Access (CDMA) format, [8]. Therefore, after down-

conversion and sampling, it can be written as

y (nTs) =

Nv
∑

m=1

ym(nTs) (1)

where

ym(nTs) =
√

2PmCm(nTs − τm)dm(nTs − τm)

cos(2π(fIF + fd,m)nTs + ϕm) (2)

and Nv is the number of satellites in view, Pm is the received

power, Cm(nTs − τm) = cm(nTs − τm)sb(nTs − τm) is the

product of the satellite spreading pseudo random noise (PRN)

code cm(nTs − τm) and the subcarrier sb(nTs − τm) used

EUSIPCO 2013 1569744519
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in the new GNSS systems, such as in Galileo (if no subcar-

rier is present, then sb(nTs − τm)=1), τm is the code delay,

dm(nTs − τm) is the navigation data, fIF is the intermedi-

ate frequency, fd,m is the Doppler frequency shift, ϕm is the

phase of the carrier, and Ts is the sampling interval (the in-

verse of the sampling frequency fs). The PRN code is a pe-

riodic sequence of rectangular chips (neglecting the front-end

filter effects), with a period Tp, while Tc is the chip duration.

Thanks to the PRN code orthogonality the receiver op-

erations can be analyzed taking into account a single space

vehicle (SV) signal. Therefore only the signal in (2) will be

considered in the remainder of this paper.

The power of the received signal is very weak and then

the IF signal in (2) is buried in the noise, then the signal to be

processed can be modeled as

r[n] = r(nTs) = ym(nTs) + η(nTs) (3)

where η(nTs) is a discrete time noise obtained by sam-

pling the IF noise, which is in turn obtained by filtering a

white Gaussian noise (WGN), with power spectral density

S(f) = N0/2, through the IF front-end filters. Therefore

η(nTs) is a Gaussian discrete-time random process with zero

mean and variance σ2 = N0BIF , where BIF is the front-end

bandwidth. Equation (3) models the so called Additive White

Gaussian Noise (AWGN) propagation channel. To character-

ize the amount of noise the carrier-to-noise ratio defined as

C/N0 = Pm/N0 is generally used.

2.1. Multipath channel

In GNSS applications an important source of error to be miti-

gated is multipath (MP), due to the reflection of the transmit-

ted signal from surrounding buildings or other obstructions.

As a consequence the AWGN model in (3) is not sufficient to

describe the propagation channel, and a more complex model

has to be introduced. Because of the motion of both SV and

user, the channel response to any signal transmitted through

changes with time, and then the impulse response of the chan-

nel is not time-invariant. To model it many factors have to be

taken into account, as described, for example, in [9], where

the concepts of fading, frequency selective channel, and fre-

quency nonselective channel are highlighted. Here we con-

sider the case of an MP channel, which can be modeled as

an FIR transversal filter with M taps and coefficients βk(t),
k = 0, 1, · · · ,M − 1, which may change with time.

In GNSS applications only the contribution of the line of

sight (LOS) is of interest, since the information we want to

extract from the received signal is the LOS propagation time,

[8]. Therefore we want to identify the reflected paths, in order

to eliminate, or at least mitigate, their effect on the computa-

tion of the user position. The receiver subsystem devoted to

the fine estimation of the propagation delay is the Delay Lock

Loop (DLL). The goal of a DLL is to estimate only a residual

part of the delay, with a duration in the order of a chip Tc.

The output of the DLL is at some fixed epochs tl = lTDLL,

where TDLL is generally a multiple of the code period Tp.

Typical values are TDLL = 20ms for GPS CA code, and

TDLL = 4ms for Galileo E1 signal.

In this paper we analyse the effects of multipaths, which

are approximately constant inside the time interval TDLL,

therefore it is widely used to model the MP channel with a

linear time-invariant FIR filter, with an impulse response of

the type hc(t) =
∑M−1

k=0
βkδ(t − τk). Since a DLL works

with the discrete-time signal ym(nTs), given in (2), we con-

sider a channel model in the discrete-time domain of the type

hc[n] = hc(nTs) =
M−1
∑

k=0

βkδ[n− k] (4)

where only MP delays of the type τk = kTs can be repre-

sented. In section 5 we will discuss the effects of this as-

sumption.

3. DLL MODEL WITH AN MP CHANNEL

As introduced in Section 1, in GNSS a widely used system

is the DLL, a closed loop scheme [8] able to estimate the

fractional delay from the peak of the correlation between the

incoming PRN code Cm(nTs − τm), and a code cloc[n] =
cloc(mTs), locally generated. The incoming PRN code is ex-

tracted from the incoming signal ym(nTs), after carrier fre-

quency wipe-off, that, even if it is not perfect, implies in gen-

eral a negligible residual error.

The effects that can seriously degrade the DLL perfor-

mance, i.e. the delay estimate, are the noise and in particular

the multipath. Therefore, an adequate model of the correla-

tion evaluated by a DLL is

RDLL(mTs) =
M−1
∑

k=0

βkR(mTs + kTs) + wR(mTs) (5)

where wR(mTs) is a noise component due to the correlation

of the input noise with the local code cloc[n], and R(mTs)
is the ideal correlation function in the absence of noise and

multipath. Thanks to the code orthogonality the correlation

R(mTs) is ideally zero outside a time interval (−Tc, Tc)
around the peak. For a GPS CA code R(mTs) is a triangle

(neglecting the effects due to the fact that the codes are not

perfectly orthogonal), while for the other GNSS signals the

shape of the main lobe of the correlation function depends

also on the subcarrier.

Only the multipaths affecting the main lobe degrade the

system, therefore we can limit the number of taps of our chan-

nel model so as to cover a delay spread equal to 2Tc. The

the DLL is generally initialized with a delay coarsely esti-

mated by the acquisition system, therefore the initial LOS

can be in any point inside the delay spread 2Tc. This means
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that we can include the acquisition error in the MP chan-

nel and we say that in the absence of noise and multipath

RDLL(mTs) = βk0
R(mTs + k0Ts).

In general, the acquisition is done by computing the corre-

lation between the incoming signal code and carrier, and local

replicas with different delays and Doppler frequencies. The

criterion to detect the signal delay and Doppler is to find the

correlation peak, looking for the maximum in the so called

search-space and fixing a threshold on the first and the sec-

ond maximum correlation peak. If the ratio between the two

highest peaks is above the threshold, a detection is done, oth-

erwise it is said that the signal is not present.

In this paper the analysis is done considering the signal

correlation, fixing the Doppler frequency, so that the estimate

is only on the code-delay.

4. LS METHOD FOR GNSS MULTIPATH ESTIMATE

In Sections 2.1 and 3, the effects of the multipath on a GNSS

channel and, as a consequence, on the receiver’s DLL are de-

scribed. In this section the signal model of LAFs is recalled,

showing how it can be suitable for the GNSS multipath chan-

nel described in Section 2.1. Then, the LS method is briefly

described, which provides a way to estimate the MP parame-

ters. In the LAF theory, as in [1], the signal model, consistent

with (5) is:

d[i] =
M−1
∑

k=0

w∗

0ku[i− k] + n0[i] (6)

where d[i] is here the measured correlation at the time i and is

a combination of delayed replicas of the signal u[i], weighted

by the parameters w∗

0k, which represents the coefficients of

a FIR filter and are unknown. In this application, u[i] is the

correlation of the direct signal, while the replicas, with am-

plitude weighted by w∗

0k, represents the contributions of the

multipath. n0[i] is the measurement error, unobservable, that

in the LAF theory is assumed to be a zero-mean white ran-

dom process. M is the length of the coefficient vector. The

bigger M , the better the model is and the better the error can

be minimized (which means better the estimate), but on the

other side bigger M means also a higher computational ef-

fort. Equation (6) can be used to describe an MP channel, a

sit uses a sum of weighted delayed replicas of the transmitted

signal, as well as (5) which represents the DLL estimate as a

sum of weighted delayed replicas plus a component of white

noise. Therefore, since the MP channel model is consistent

with the LAF’s signal model described in (6), the LAF’s tech-

nique can be suitable for the estimation of GNSS signals af-

fected by multipath.

The goal of a LAF is to find an estimate w∗

k of the un-

known coefficients w∗

0k, which minimize the residual error

e[i] = d[i]− y[i], where y[i] is:

y[i] =
M−1
∑

k=0

w∗

ku[i− k] (7)

and u[i] is the ideal correlation at the input of the FIR.

As described in [1], different linear adaptive filtering tech-

niques exist. In this paper, the Least Square (LS) approach is

considered. Differently from the LMS and RLS, the LS com-

putes the solution analytically as:

ŵ = Φ
−1

θ (8)

where w∗ = [w∗

0
, ..., w∗

M−1
] is the vector of the estimated co-

efficients, Φ is a square matrix of dimension M which con-

tains the correlation terms of u[i]. θ is a vector which con-

tains cross-correlation terms between u[i] and d[i] [1]. It is

θ = [θ(0)θ(−1)...θ(−M)θ(−M + 1)]T where each element

is θ(−k) =
M
∑

i=1

u[i− k]d∗[i].

Thanks to the LS method, an estimate can be done of the mul-

tipath components, which introduce an additive delay on the

DLL estimate. A correction can be applied on the resulting

pseudorange measurement, taking into account the multipath

contribution, anyhow the focus of this paper is not on this is-

sue that will be analyzed in depth in the future. Notice that

the LOS contribution is represented by the replica with the

smallest delay, given the hypothesis of MP with bigger delay

than the LOS. Different cases will be treated in future.

5. SIMULATION RESULTS

Some simulation results are shown, obtained with MatLab us-

ing realistic data generated with N-Fuels [10], a GNSS signal

simulator. Simplifying assumptions are done, than anyway

are widely used since generally valid. Only the case of de-

layed MP is considered, and not the particular and rare case

in which the MP rays are received by the antenna before the

direct signal. Then, MP is assumed to have the same Doppler

frequency shift of the direct path. Last, the MP power is lower

than the direct signal power. Results are shown in the case of

1 MP, with a delay of 0.2Tc and correlation peak amplitude

0.5A, where A is the LOS correlation peak.

In (5), the noise component is assumed to be white. This

is not the case if all the samples of the GNSS correlation

d[i] are computed by correlating a fixed signal segment with

shifted-versions of the local code, so generating a correlated

noise component n0[i]. A way to have uncorrelated noise is

to compute each sample of d[i] using different segments of

the incoming signal, but in order to have the same integra-

tion time and then the same performance in terms of Signal to

Noise Ratio (SNR), many subsequent signal segments have to

be considered.

Another important aspect is the resolution. The spacing

between the correlator samples determines the resolution with

3
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which the MP can be characterized. In this paper, we consider

N = 49 correlation samples and M = 22 FIR taps. Notice

that N is the number of samples in the correlation function,

i.e. the number of correlators needed. Future activities will

focus on how this number can be optimized.
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Fig. 1. Ideal case without noise, 1 MP.

The ideal case of the absence of noise is first considered,

with an integration time TDLL = 1 ms. Figure 1 (a) shows

the measured correlation d[i], the filter estimate y[i], the error

e[i] = d[i]−y[i], the ideal correlation u[i] and the estimate of

the MP contributions, obtained as y[i] − w∗

0
· u[i], that is by

subtracting the zero-delay contribution (assumed as the LOS)

from the filter estimate y[i].

B C D B D C E BF CBCD BD CE BE CG BG C
H I J K LMNOPPQRSTOUVWXO YZZ[\ BC BD B BD C BE B BE C BG B BG C B] B B] C BC B B

(a) w∗

k

B D B E B G B ] BF DBDEG]Ĉ _àMNOPPQRSTOÙaWXZZZ\ BD B BE B BG B B] B BC B B^ B Bb B Bc B Bd B BD B B B
(b) MP est.

Fig. 2. LS estimate applied in post-correlation in the absence

of noise. 1 MP. 1000 MC.

It is important to notice that due to the resolution, the sim-

ulated MP peak is in between two samples. In order to remedy

this, the LAF estimates the MP contribution by combining

two contributions with peaks on the samples immediately be-

fore and after, respectively, with respect to the true MP. This

effect is clearly visible in Figure 1 (b) and in Figure 1 (c),

which depict, respectively, the filter coefficients w∗

k and the

correspondent filter contribution to the estimate y[i]. In Fig-

ure 1 (b) the coefficients correspondent to high delays should

be ideally zero, but they are not, since the measured corre-

lation function d[i] is obtained by correlating the incoming

signal in (1) after performing the carrier wipe-off, and this

operation is not perfect. In fact carrier residuals remain due

to the imperfect double frequency removal.

Another effect, due to the incommensurability between

the sampling frequency and the chip rate, is shown in Figure

1 (d), where the coefficients w∗

k are shown for 10 Monte Carlo

(MC) simulations. The effect is that the LAF estimate is not

always the same in successive integration intervals, even in

the absence of noise.

In the following, some results are shown, referred to dif-

ferent Monte Carlo simulations with number of runs NMC =
1000. The results are presented in 2D, using a colormap,

where the axes represent, respectively, the parameters we are

interested in (estimated LAF coefficients and MP estimate)

and the values that they could assume, while the color repre-

sents the occurrences.

The parameters we are interested in are the coefficients

w∗

k and the MP estimate y[i]−w∗

0
· u[i]. Results are shown in

the absence and presence of noise. In the case of noise pres-

ence, a standard good value of carrier-to-noise ratio is used

(C/N0 = 50 dB-Hz). Comparisons are done between two

cases, in which the correlation function d[i] is computed in

two different ways. In the first case, the integration time is

TDLL = 1 ms, and each sample of d[i] is computed using

the same signal interval, causing correlated noise in d[i]. In

the second case, different signal intervals are considered to

compute different samples of d[i], so that the noise affecting

d[i] results to be uncorrelated. This comparison could be con-

sidered not fair, since in the first case the signal is extracted

in a time window Tw = TDLL = 1 ms, while in the second

case a larger time window Tw = ((N + 1)/2) · TDLL ms is

needed, where N is the number of correlation samples. Note

that (N + 1)/2 signal intervals are sufficient because in the

two sides of the triangle the noise can be considered uncor-

related, even if computed using the same portion of signal,

thanks to the PRN code orthogonality. However, this compar-

ison can be considered fair because in both cases each sample

of d[i] is computed by using the same integration time TDLL,

and a larger Tw is the price to be paid to avoid noise correla-

tion.

The first simulation is without noise (ideal case). Figure 2

(a) shows the estimated coefficients w∗

k. The highest peak cor-

responding to the LOS is clearly visible, and MP is detected.

The distribution around the true delay is due to the sampling

effect, combined with the incommensurability, as explained

in the comments to Figure 1. As expected, as in Figure 1

(b), a distribution of values around zero is present for higher

delays. Figure 2 (b) shows the MP estimate y[i] − w∗

0
· u[i]

(N = 49 correlation samples). Close to the true MP delay

(0.2Tc), the histogram presents the highest occurrences. The

4
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other samples are spreader, because of the possible different

combinations of contributions that give similar estimates of

the same MP, due to sampling and incommensurability.

More simulation results are shown in the case of noisy GNSS

signal, with C/N0 = 50 dB-Hz.

B C D B D C E BF ^F ]F EBE]̂ H I J K LMNOPPQRSTOUVWXO YZZ[\ BE B] B^ Bc BD B BD E B
(a) w∗

k, standard corr.

B D B E B G B ] BF EF D e CF DF B e CBB e CDD e CE
_àMNOPPQRSTOÙaWXZZZ\ BD B BE B BG B B] B BC B B^ B Bb B Bc B Bd B BD B B B

(b) MP est., standard corr.

B C D B D C E BF ^F ]F EBE]̂ H I J K LMNOPPQRSTOUVWXO YZZf\ BD BE BG B] BC B^ Bb Bc Bd BD B B
(c) w∗

k, decorrel.

B D B E B G B ] BF EF D e CF DF B e CBB e CDD e CE
_àMNOPPQRSTOÙaWXZZZ\ BD B BE B BG B B] B BC B B^ B Bb B Bc B Bd B BD B B B

(d) MP est., decorrel.

Fig. 3. 1 MP. 1000 MC, C/N0 = 50 dB/Hz.

Figure 3 (a) and (b) refer to the case with correlated noise

affecting d[i], while Figure 3 (c) and (d) refer to the case

where the noise is uncorrelated. Due to the noise correla-

tion, in Figure 3 (a), the estimated coefficient values are less

spread than in Figure 3 (c), anyhow the maximum value of the

filter weights is in correspondence of the LOS (zero-delay).

The other occurrences of the coefficients w∗

k are distributed

around zero, apart around the MP, at 0.2Tc where higher val-

ues are present, which detects the presence of MP. With un-

correlated noise, also the MP estimate is spreader (Figure 3)

(d), but the MP is still clearly identifiable. Notice that, due

to the noise, the FIR coefficients can assume also negative

values, as shown in Figure 3 (a) and in Figure 3 (c). This

is how the filter responds when the target is a noisy signal,

estimating d[i] using a combination of positive and negative

contributions. However, we are interested in the combined

effect of all the coefficients, which gives an estimate of the

MP correlation shape (triangle), as shown in Figure 3 (b) and

Figure 3 (d).

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

From this first qualitative analysis, it can be said that the noise

correlation in the LAF applied to GNSS MP detection does

not represent an impediment. On the contrary, it may have

favorable impact, even if may generate a bias on the correla-

tion value. Particular attention must be paid to the sampling

rate used to measure the correlation function. In fact, at the

decreasing of the sampling frequency, the performance of the

channel effect estimate can highly degrade.

Future works include an analytical analysis of the effects

of the noise correlation in this application, and joint analysis

of the sampling frequency and of the noise effects and the de-

termination of proper thresholds for the MP detection. Also,

tests with real data and comparisons with established tech-

niques for multipath estimation will allow to proof the method

performance.
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