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ABSTRACT

Hyperspectral imaging is an active research area in remote
sensing. Due to the high volume of hyperspectral image data,
the exploration of compression strategies has received a lot
of attention in recent years. In this paper, we introduce a
new compressed sensing methodology, termed Hyperspectral
coded aperture (HYCA), which exploits the high correlation
existing among the components of remotely sensed hyper-
spectral data sets to reduce the number of measurements nec-
essary to correctly reconstruct the original data. HYCA relies
on two central properties of most hyperspectral images: i) the
spectral vectors live on a low dimensional subspace and ii)
the spectral bands are piecewise smooth. The former prop-
erty allows to represent the data vectors using a small number
of coordinates, and the latter implies that each coordinate is
piecewise smooth and thus compressible on local differences.
The reconstruction of the data cube is obtained by minimizing
a convex objective function containing a data term associated
to the compressed measurements and a total variation spatial
regularizer. A series of experiments with simulated and real
data show the effectiveness of the newly developed HYCA,
indicating that the proposed scheme has a high potential in
real-world applications.

Index Terms— Hyperspectral imaging, compressive
sensing, coded aperture, signal subspace, total variation,
optimization.

1. INTRODUCTION

Hyperspectral imaging spectrometers collect hundreds or
thousands of bands (at different wavelength channels) for the
same area on the surface of the Earth [1]. For instance, the
NASA Jet Propulsion Laboratory’s Airborne Visible Infra-
Red Imaging Spectrometer (AVIRIS) covers the wavelength
region from 0.4 to 2.5 microns using 224 spectral channels, at
nominal spectral resolution of 10 nanometers [2]. The result-
ing multidimensional data cube typically comprises several
gigabytes per flight.

Due to the extremely large volumes of data collected by
imaging spectrometers, hyperspectral data compression has
received considerable interest in recent years [3, 4]. These
data are usually collected by a satellite or an airbone instru-
ment and sent to a ground station on Earth for subsequent
processing. Usually the bandwidth connection between the
satellite/airborne platform and the ground station is reduced,
which limits the amount of data that can be transmitted. As
a result, there is a clear need for (either lossless or lossy) hy-
perspectral data compression techniques that can be applied
onboard the imaging instrument.

In this paper, we develop a new compressive sensing (CS)
framework [5, 6] for hyperspectral images, termed hyperspec-
tral coded aperture (HYCA), which exploits two character-
istics of the hyperspectral images: i) the hyperspectral vec-
tors belong to a low dimensional subspace, and ii) the imaged
scene components present a high spatial correlation. These
two characteristics mean that the hyperspectral data cubes are
compressible, i.e., they admit a representation in given base or
frame in which most of the coefficients are small, and, thus,
the data is well approximated with just a small number of
large coefficients.

Compressibility, or sparsity!, is a necessary condition for
success of compressive sensing. In our approach, and having
in mind the characteristics i) and ii), we represent the spectral
vectors in a basis of the signal subspace and model the spa-
tial correlation by promoting small local differences on the
images of coefficients by minimizing their total variation [7].
Under the linear mixing model [8], if the spectral signatures
of the endmembers are used to represent the spectral vectors,
then the representation coefficients are the abundance frac-
tions of the pure materials. In this way, the proposed approach
is strongly connected with unmixing. To be more precise, and
assuming we use the spectral signatures of the endmembers to
represent the spectral vectors, our methodology implements
hyperspectral unmixing in addition to hyperspectral compres-
sive sensing.

'A vector is k-sparse is only k of its components are different from zero.



The remainder of the paper is organized as follows. Sec-
tion 2 describes the proposed methodology. Section 3 de-
scribes the experimental results, conducted in this work us-
ing both synthetic and real hyperspectral data. Section 4 con-
cludes the paper with some remarks and hints at plausible fu-
ture research lines.

2. DESCRIPTION OF THE METHOD

Let X € R™ *"» represent, in matrix format, a hyperspectral
image with n;, spectral bands and n,, := n,.n. pixels where n,.
and n. denote, respectively, the number of rows and columns
of the hyperspectral image in the spatial domain.

Let y € R™ denote the CS measurements modeled as

y =AX) +w, ey

where A : R™*" — R™ is a linear operator which com-
putes m inner products between known m vectors and the
elements of X and w models additive perturbation, hereafter
termed noise, accounting for, e.g., modeling errors and sys-
tem noise. Since A is a linear operator, then we have A(X) =
Ax, where x := vec(X) is the vectorization of matrix X by
stacking its columns and A € R™*", with n := nyny, is the
matrix representation of the linear operator A.

The objective of CS is to recover x from y with m < n,
in order to have compression in the acquisition. Without any
further information, this recovering is impossible even in the
absence of noise because the matrix A is undetermined. If,
however, vector x admits a sparse representation with respect
to a given frame ®, i.e., x = PO with 0 sparse, then the
solution of the optimization problem

moin 0]l subjectto: ||y — A®O|| <4 )
yields, in given conditions, a good approximation for x. In
(2), the notation ||x||o, abusively termed the ¢, norm of x,
denotes the number on non-null components of x and § > 0
is a parameter depending on the “size” of the noise level.

For § = 0, if the system of linear equations y =
A ®0 has a solution satisfying 2||6|o < spark(A®), where
spark(A) < rank(A) + 1 is the smallest number of lin-
early dependent columns of A®, it is necessarily the unique
solution of (2) [9, 10]. For § > 0, the concept of unique-
ness of the sparsest solution is replaced with that of stability
[11, 12, 13]. For example in [12], it is shown that, given
a solution vector 6 of the noiseless (§ = 0) problem (2),
satisfying the sparsity constraint ||0]]o < (1/u(A®) +1)/2,
where p(A®P) is the mutual coherence of matrix p(A®),
then 6 is unique and any solution 6° of (2) for a given § > 0
such that ||y — A®O°|| < § satisfies
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1— u(A®)(2]16]jo — 1)’

l6° —O||* <

The problem (2) is NP-hard [14] and therefore there is lit-
tle hope in solving it in a straightforward way. A possible
strategy is to use convex relaxation via analysis based regu-
larization, which replaces the £y norm with the ¢; norm ob-
taining

moin [6][1 subjectto: [y — APO| < 4. 3)

The above formulation is synthesis-based, in the sense
that x = P80, i.e., x is synthesized from the coefficients 6.
Here, we adopt an analysis-based approach, i.e., we use an
analysis operator W such that the analysis of the transformed
coefficients ¥x are sparse. Then, we obtain

min | ¥x||; subjectto: |y — Ax|| < 4. 4)

It should be noted that there is empirical evidence of the su-
periority of the analysis based approaches [15].

In our approach, we design the measurement matrix A as
block diagonal, i. e.,

A = bdiag(Ay,...,Ay,)

where A; € R9%™ acts on the spectral vector x; comput-
ing ¢ projections. In this way, we obtain gn, measurements
and thus a compression rate of ¢/n,. In our implementa-
tion, and for algorithmic complexity reasons, we have A; €
{H,,...,H,, }, i.e, we will have only n;, different matrices
A; where the way we assign a matrix to a given pixel is de-
pending on the pixel. Specifically, we partition the image into
square windows, an inside each window we assign Hj to the
i-th window pixel. Finally, another important observation is
that hyperspectral datasets live systematically in low dimen-
sional subspaces and therefore we can write

X = EZ, (5)

where E € R™*P is a full column rank matrix, possibly or-
thogonal, which spans the signal subspace. Usually, we have
p < ny. In this work, we assume that E is known (this is a
reasonable assumption since the complete dataset is acquired
onboard and the bottleneck is in the transmission of the data
to a control station on Earth). In other words, the current trend
is to compute matrix E onboard and then do CS acquisition
and send only m = gn,, samples with ¢ < p. If E is the mix-
ing matrix and the linear mixing model is valid, then Z are
the fractional abundances.

Given that x = vec(X) = vec(EZ) = (I ® E)z, with
z := vec(Z), then we have

Ax=A(I®E)z (6)
= bdiag(A4E, ..., A, E)z @)
=Kz, 3

where
K := bdiag(AE,...



Similarly to the criteria (4), we propose the following con-
vex optimization problem to recover z

min ||Pz|; subjectto: ||y — Kzl < 6. ©)

Our regularizer || ®z||; is the sum of total variations of the
p images of coefficients Z:

p
@zl = > TV(Z) (10)
i=1
:=TV(z2), (11)

where Z; := Z(3i,:) (matlab notation) is the ith image of the
representation coefficients with respect to matrix E. There-
fore, W is the discrete gradient operating over the images Z;.
By minimizing TV(z), we are promoting piecewise-smooth
images of coefficients. As mentioned before, when E is the
mixing matrix, we can interpret the above results in terms of
abundance fractions.
In this work we consider two criteria:

C-HYCA criterion:
min TV(z) subjectto: ||y —Kz|| <4, z>0. (12)

HYCA criterion:
min (1/2)|ly — Kz|? + A\TV(z) (13)
subject to: z > 0. (14)

The constraint z > 0 is enforced only if E is the mix-
ing mitrix. Otherwise, it is disregarded. The optimization
problems (12) and (13) are convex, although very complex
from the computational point of view due to its dimension
and due to the presence of non-smooth terms in the objec-
tive functions. We tackle these difficulties by using instances
of the alternate direction method of multipliers described in
[16] which convert a very difficult problem into a sequence of
simpler problems.

3. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments using dif-
ferent versions of HYCA and C-HYCA algorithms on real
and simulated data. Specifically, we have considered three
cases, first we have considered the problem without the non-
negativity constraint, in this case we have considered that E is
an orthonormal matrix and the sampling matrix H; is a ran-
dom, Gaussian iid matrix. In the second case we have con-
sidered that H; = G;E!, where G; € R*P is a random,
Gaussian iid matrix, and Ef is the pseudo-inverse of the ma-
trix E. In the third case we have considered the non-negativity
constraint and we assume that E is the mixing matrix which
contain the endmembers and that H; is a random, Gaussian
iid matrix.

Table 1. Average NMSE between the original and the recon-
structed dataset for ¢ = 3 and different SNR values, after 10
Monte-Carlo runs.

Version SNR=30db SNR=50db SNR=70db SNR=o00
HYCA " 8.27 - 104 0.52-10-% 052.100%  0.30.-10" %
HYCA T 0.44 - 10— 4% 0.45-10-%  040.10=%  0.37.10° 4
HYCA | 21.08-10-% 068-10-% 033.-100% 0.20-10"%
C-HYCA 22.7-10 4% 3.35-10-% 324.10% 336.10"1%
C-HYCA T 2.73 - 104 2.00-10-% 131.100%  1559.10"%
C-HYCA ¢ 7.26 - 10 % 0.51-10-%  0.29.10-% 0.28.10" %

* First case without non-negativity and E* := orth(E). T Second case with H; = G; E¥. 8 Third case using
the non-negativity constraint.

3.1. Experiments with Synthetic data

The synthetic dataset used in this experiments were generated
from spectral signatures randomly selected from the United
States Geological Survey (USGS) 2. The simulated images
consist of a set of 5 x 5 squares of 10 x 10 pixels each one,
for a total size of 110 x 110 pixels. The first row of squares
contains the endmembers, the second row contains mixtures
of two endmembers, the third row contains mixtures of three
endmembers, and so on. Zero-mean Gaussian noise was
added to the synthetic scenes in with signal-to-noise ratios

2
(SNRs) defined as SNR = 10 - logm%, where [E de-
F
notes mean value, to simulate contributions from ambient and
instrumental noise sources. Fig. 1 displays the ground-truth

abundance maps used for generating the simulated imagery.

In order to evaluate the performance of the HYCA and C-
HYCA, we use as performance indicator the normalized mean
squared error (NMSE) of the reconstruction given by

NMSE = |[E(Z - Z)|[3/|[EZ||%, (15)

where Z and Z denote the original and reconstructed abun-
dance fraction maps, respectively. In our experiments, we set
the window size ws = 2. In the first case we disabled the
non-negativity constraint and we assumed that the mixing ma-
trix E* is an orthogonal matrix computed as E* := orth(E),
where E denotes the original mixing matrix used to gener-
ate the dataset and E* denotes the mixing matrix used in the
reconstruction algorithm. In the second case we used for sam-
pling H; = G;E* without the non-negativity constraint. Fi-
nally, in the third case we used the non-negativity constraint
considering the original mixing matrix used for the dataset
generation. In this experiment, we set ¢ = 3. Since the orig-
inal data set has nb = 224 bands, the compression ratio is
nb/q = 74.67 and the number of measurements per pixel
band is ¢/nb = 0.0134.

Table 1 shows the NMSE obtained for both versions
(HYCA and C-HYCA) in different cases. We performed 10
Monte-Carlo runs, sampling not only the noise but also the
elements of the linear operator A. The regularization param-
eter A in (13) was hand-tuned for optimal performance in

Zhttp://speclab.cr.usgs.gov/spectral-lib.html



(a) Endmember #1  (b) Endmember #2

(c) Endmember #3

(d) Endmember #4  (e) Endmember #5

Fig. 1. True abundance maps of endmembers in the synthetic hyperspectral data.

the case of the HYCA algorithm. Having in mind the linear
model (5), the parameter 6 in (12) is setto § = || A(W)]| F.

As we can see in Table 1, by disabling the non-negativity
constraint the algorithm is more robust to noise. However, the
implementation with the non-negativity constraint provides
better results when there is no noise. This is expected, as
noise introduces outliers in the model which lead to errors in
the reconstruction when we use the non-negativity constraint.
If we compare the HYCA and C-HYCA criteria on Table 1,
we can see that both versions provide very good results with
low reconstruction errors. We can also observe that HYCA
outperforms C-HYCA, which is probably due to the parame-
ter optimization conducted in the case of HYCA.

3.2. Experiment with Real Data

In this experiment, we use the well-known AVIRIS Cuprite
data set, available online in reflectance units after atmospheric
correction. This scene has been widely used to validate the
performance of endmember extraction algorithms. The por-
tion used in experiments corresponds to a 250 by 190 pixels
subset of the sector labeled as f970619t01p02_r02_scO3a.rfl
in the online data. The scene comprises 224 spectral bands
between 0.4 and 2.5 pum, with full width at half maximum
of 10 nm and spatial resolution of 20 meters per pixel. Prior
to the analysis, several bands were removed due to water ab-
sorption and low SNR in those bands, leaving a total of 188
reflectance channels to be used in the experiments. We used
a window size of ws = 2, so that m = 4. Here, we estimated
the number of endmembers with Hysime algorithm [17].

In this experiment, we have also considered the same
three cases as in the experiment with simulated data. But in
this case the mixing matrix was estimated from the original
data using the vertex component algorithm (VCA) [18], so
that in the first case we use E* := orth(E) where E is the
mixing matrix estimated by VCA algorithm. In the second
case H; = G,Ef and E* := E. Finally in the third case,
due to the non-linear mixtures and outliers present in the real
images, the non-negativity constraint may be violated. In or-
der to ensure that the mixing matrix encloses the whole data
set and the non-negativity constraint is satisfied, we open the
cone defined in the mixing matrix E* as follows:

E*:=E+A.(E—E) (16)

where A is a scalar which defines how much the cone is

Table 2. Average NMSE between the AVIRIS Cuprite data
and its reconstructed version (after 10 Monte-Carlo runs) for
different compression ratios.

Version =5 7=09 7 =13 =17
HYCA * 98.13 - 10— 4 5.21- 104 2.59 - 104 454104
HYCA T 376.83 - 10~ % 200.39-10-%  108.80 - 10— % 34.56 - 10— 1
HYCA 4.66 - 10— 7 2.50 - 10— 4 1.28 104 1.05-10—4
C-HYCA 24.05 - 10— 4 5.77 - 104 3.54-10 % 2.63- 104

C-HYCA T 590.82 - 10— %  351.57 - 10~ 4  268.54-10-%  225.88 - 104

C-HYCA § 3.84 - 104 2.24 .10 4 1.74 10— 4 1.31-10" 4

* First case without non-negativity and E* := orth(E). T Second case with H; = G;E¥. 8 Third case using
the non-negativity constraint.

opened and E is a matrix containing the mean spectrum of the
endmembers. By choosing a value of A large enough, then
all observed spectral vectors are inside the cone implying that
z > 0. In the current data set, A = 6 ensures this constraint.
In order to evaluate the performance of HYCA and C-HYCA
with the real dataset, we perform experiments with the com-
pression ratios 188/¢q with ¢ = 5,9,13,17. In all cases we
used a window size of ws = 2.

Table 2 shows the value of NMSE over 10 Monte-Carlo
runs for several versions of the proposed method with differ-
ent compression ratios over the Cuprite dataset. In this ex-
periment we can see that the version with the non-negativity
constraint provide better results than the other versions. Here,
we observe a slightly worse performance in the second case
which is probably due to the fact that we are estimating the
endmembers from the original data. For illustrative purposes,
Fig. 1 shows the reconstructed and the original spectral signa-
tures with highest, average and lowest error for the C-HYCA
algorithm (with the non-negativity constraint) for different
compression ratios. In this plot, we can see that, even in the
worst case, the reconstructed pixel preserves the shape of the
original pixel, which means that the features of the signature
are well-preserved. In the other two cases the reconstructed
and the original pixels are extremely similar.

4. CONCLUSION

In this paper we discuss a compressive sensing algorithm
called hyperspectral coded aperture (HYCA) and its con-
strained version (C-HYCA). HYCA framework takes advan-
tage of two main properties of hyperspectral data, namely the
high spatial correlation of abundance fractions and the low
number of endmembers to explain the observed data. The
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Fig. 2. Worst (a,d), average (b,e), and best (c,f) reconstructed pixels in the AVIRIS Cuprite scene for values of ¢ = 5 and

q = 15, respectively.

former property is exploited by minimizing the total variation
(TV) of the reconstructed images of abundance fractions and
the latter property is exploited by formulating the reconstruc-
tion problem with respect to abundance fractions, which have
much lower dimension than the original data. While HYCA
depends on the tuning of a regularization parameter control-
ling the relative weight between the TV regularizer and the
data term, C-HYCA does not depend on any regularization
parameter. As demonstrated by our experiments with syn-
thetic and real hyperspectral data, both approaches provide
good results in the task of compressing remotely sensed hy-
perspectral data sets and are strongly related with the concept
of spectral unmixing that has been widely used to interpret
hyperspectral data.
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