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ABSTRACT

In this paper, two novel algorithms for distributed estimation
of sparse signals are presented. The algorithms follow an it-
erative greedy two–step procedure. The first algorithm oper-
ates in a training based manner,i.e., the nodes of the network
have access to input–output data, whereas the second operates
blindly, i.e.,the nodes observe output data only. In both cases,
the nodes cooperate with each other, by exchanging informa-
tion with the neighboring nodes. The goal is twofold, first
to identify the support set of the unknown signal, and then
the non–zero values, which are restricted in the active sup-
port set. Theoretical results are outlined and an experimental
validation of the proposed algorithms is carried out.

Index Terms— Distributed systems, compressed sensing,
system identification, greedy algorithms

1. INTRODUCTION

Many real–life signals and systems adhere to parsimonious
models. In other words, they comprise a small number of
significant coefficients, whereas the rest are either zero or
have negligible amplitudes. Typical examples of sparse sig-
nals/systems are: wireless multipath channels, acoustic sig-
nals, seismic data, image deblurring and High Definition TV
[1].

There are two major algorithmic approaches to sparsity–
aware learning. The first promotes sparsity by embedding into
the optimization problem thè1 norm constraint,e.g.,[2–4].
It is by now well established that such a constraint promotes
sparse solutions. The other approach relies on the greedy
viewpoint, [5, 6]. Greedy techniques identify the positions,
in which the non–zero coefficients lie (known assupport set),
and then restrict the estimation step in this subset.

With only few exceptions,e.g.,[7–10], sparsity promot-
ing algorithms assume that the training data, through which
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the unknown target vector is estimated, are centrally avail-
able. That is, there exist a central processing unit (or Fusion
Center, FC), which has access to all the training data, and
performs all essential computations. Nevertheless, in many
applications the need for decentralized/distributed process-
ing rises. Typical examples of such applications are those
involving wireless sensor networks (WSNs), which are de-
ployed over a geographical region, and the nodes are tasked
to collaboratively estimate an unknown (but common) sparse
vector. The existence of a fusion center, which collects all
training data and then performs the required computations,
may be prohibited due to geographical constraints and/or en-
ergy, bandwidth limitations. Henceforth, the developmentof
distributed algorithms is of significant importance.

A scarce design factor in data networks is the available
bandwidth and hence needs to be managed carefully. There-
fore, it is desirable for each node to obtain the minimum train-
ing data without consuming much bandwidth. Besides, the
existence of a training sequence can impose a significant over-
head cost. Blind identification methods rely only on output
data to identify the sparse signal and hence eliminate the need
for training [11]. Therefore blind identification algorithms of-
fer a bandwidth efficient solution to distributed learning.The
basic tools to explore blind identification strategies are maxi-
mum likelihood methods, subspace techniques and statistical
methods, using either second order or higher order informa-
tion [11],[12]. In this work, Higher Order Statistical (HOS)
information from the available output data of each node is
used cooperatively to estimate the unknown vector.

In this paper, two novel algorithms for sparse signal es-
timation in distributed networks are proposed. The first is
appropriate for training–based operation. Each node has ac-
cess to a finite number of input–output measurements. Be-
sides their own measurements, network nodes exploit infor-
mation, which comes from their neighbours, where commu-
nication is possible. The training–based algorithm startswith
data fusion under a certain protocol; next, the nodes individu-
ally compute their own support set. Thes dominant positions
of the unknown vector are recovered and then a Least Squares
step, restricted on this subset, follows. A theoretical analysis
is sketched and experimental results highlight the enhanced
performance of the proposed batch scheme, compared to an
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existing sparsity promoting distributed algorithm. The greedy
operating mode is subsequently employed in the blind setup.
The resulting algorithm exploits network information to en-
hance the sample statistics in each node, in order to perform
recovery of the unknown sparse signal.

Notation:Vectors will be denoted by boldfaced letters and
matrices by uppercase boldface letters. The symbol(·)T will
stand for the transpose. Moreover, the set of all real numbers
will be denoted byR. For a vectorx := [x1, . . . , xm]T ∈
R

m, the termsupps(x), denotes its support set, which con-
tains thes largest in amplitude positions ofx. Given a certain
setS, its cardinality will be denoted by|S|. Finally, ‖x‖`2
will be the Euclidean norm and‖x‖`1 :=

∑m
i=1 |xi| the `1

norm ofx.

2. SPARSE PROBLEM FORMULATION

Our task is to estimate an unknown sparse parameter vector
h∗ ∈ R

m, exploiting a finite number of measurements col-
lected at theN nodes of an ad–hoc network. We denote the
node set byN = {1, . . . , N}, and we assume that each node
is able to exchange information, with a subset ofN , namely
Nk ⊆ N , k = 1, . . . , N . This set is also known as theneigh-
borhoodof k. The input–output relation adheres to the fol-
lowing linear model:

yk = Akh∗ + ηk, ∀k ∈ N (1)

whereAk is anl ×m sensing matrix, withl � m, yk ∈ R
l

andηk ∈ R
l is the noise process. The vector to be estimated

is assumed to be at mosts–sparse,i.e., ‖h∗‖`0 ≤ s � m,
where‖ · ‖`0 denotes thè0 quasi–norm.

In non–distributed sparsity–aware learning the goal is the
estimation of the vectorh∗, using fewer measurements,l,
than the dimension of the problemm. A representative ex-
ample of a sparsity promoting algorithm is the Least Absolute
Shrinkage Selection Operator (LASSO), which solves the fol-
lowing optimization problem

ĥ = arg min
‖h‖`1

≤δ
‖y −Ah‖2`2 , (2)

where the node subscriptk is surpressed, andδ is a user–
defined radius of thè1–norm. Notice that the term‖y −
Ah‖2`2 accounts for the misfit between the input–output mea-
surements, and thè1–norm constraint promotes sparsity by
shrinking small coefficients towards zero. Several techniques
have been proposed for solving the optimization problem de-
scribed in (2),e.g.,[3].

We turn now our focus on the distributed sparsity–aware
estimation task and rewrite (2) as follows:

ĥ = arg min
‖h‖`1

≤δ

∑

k∈N

‖yk −Akh‖
2
`2
. (3)

This problem can be reformulated in a fully decentralized
way, where each node exploits local information, as well as

information received by the neighborhood. The decentralized
optimization can be efficiently solved by adopting the Alter-
nating Direction–Method of Multipliers (AD–MoM), [13]. It
has been shown in [7], that the solution, which occurs if ones
solves the decentralized problem, coincides with the solution
obtained by solving (3). It should be pointed out that each
node lacks global network information; however if an appro-
priate cooperation protocol is adopted, then the global solu-
tion can be obtained.

3. GREEDY TECHNIQUES AND THE PROPOSED
TRAINING–BASED ALGORITHM

Greedy techniques under the centralized scenario, iteratively
estimate the unknown parameter by applying the following
two–step approach:

• Subset Selection: After the computation of the proxy
signal, which is constructed based on input–output
measurements, thes–dominant terms are computed.
These comprise the identified support set.

• Greedy Update: The estimate of the unknown vector
is computed, by performing a Least–Squares restricted
on the identified support set.

The performance of the greedy–based algorithms is crucially
affected by the choice of the proxy signal. One of the first
approaches is the Orthogonal Matching Pursuit (OMP) [14].
The OMP proxy signal equals top = AT (y − Aĥ) ≈

ATA(h∗ − ĥ), whereĥ stands for the most recent estimate.
At each iteration, the largest coefficient of the proxy is com-
puted, and is added on the current estimate of the support
set. This procedure is repeateds times and the support set
is estimated. Noise sensitivity is a major drawback of this
algorithm. A more sophisticated approach proposed in [5], is
the Compressed Sampling Matching Pursuit (CoSaMP). This
algorithm allows to chose multiple indices at each iteration
and results to a better performance compared to the OMP.
An adaptive version of the CoSaMP, known as SpAdOMP
has been proposed in [6]. A different approach, presented
in [15], selects thes dominant coefficients of the following
proxy: p = ĥ + AT (y − Aĥ) ≈ h∗. This idea will be
followed in this study, since it leads to enhanced performance
compared to other schemes and allows network support set
consensus,i.e., the nodes will agree on the same support set
in the distributed scenario, due to its non time varying nature.

In distributed greedy–based algorithms, information is ex-
changed, so as to achieve the following goals:

• Support set Consensus.That is, all network nodes
identify the same support set.

• Information enhancement. In scenarios where the
number of measurements is small, exchanging data
with the neighborhood and fusing them under a certain
protocol, can lead to better results.

The steps of the proposed algorithm are summarized in Table
1. In steps 1 and 2, the nodes exchange their input–output

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Table 1. The Distributed Hard Thresholding pursuit Algorithm (DiHaT)
Algorithm description Complexity

hk,0 = 0m, yk,0 = yk, Ak,0 = Ak Sk,0 = ∅ {Initialization}
Loop
1: yk,n =

∑
r∈Nk

ar,kyr,n−1 {Combine local output measurements} O(|Nk|l)

2: Ak,n =
∑

r∈Nk

ar,kAr,n−1 {Combine local input measurements} O(|Nk|ml)

3: Sk,n = supps

(
hk,n−1 +A

T

k,n(yk,n −Ak,nhk,n−1)
)

{Identify s largest components} O(m2l)

4: ĥk,n = argminh

{
‖yk,n −Ak,nh‖

2
`2

}
, supp(h)⊆Sk,n {Signal Estimation} O(ms)

5: h̃k,n =
∑

r∈Nk

br,kĥr,n {Combine local estimates} O(|Nk|m)

6: hk,n = supps(h̃k,n) {Identify thes largest components of the estimate} O(m)
Until halting condition istrue

measurements and fuse them under a certain protocol. This
information fusion is dictated by the combination weights
ar,k, ∀k ∈ N , ∀r ∈ Nk. As it will become clear later on,
if these coefficients are chosen properly, thenAk,n andyk,n

tend asymptotically to the average values,i.e., 1
N

∑N

r=1 Ar

and 1
N

∑N

r=1 yr, respectively. This significantly improves
the performance of the algorithm, since as the number of iter-
ation increases, the data available at each node are enhanced,
in the sense that the proxy selection and the parameter esti-
mation procedure will contain information which comes from
the entire network. In step 3, thes largest in amplitude coef-
ficients of the signal proxy are selected, and step 4 performs
a Least–Squares operation in the support set computed in the
previous step. In step 5, the nodes exchange their estimates
and fuse them in a similar way as in steps 1,2. Finally, since
the nodes have access to different measurements, especially
in the first iterations in which their input–output data are not
close to the average values, the estimated support sets among
the neighborhood may be different. This implies that in step
5 there is no guarantee that the produced estimate will be
s–sparse. To this end, in step 6 a thresholding operation takes
place and the final estimate at each node iss–sparse.

3.1. Convergence Analysis

Let us define theN × N combination matrixW1 with en-
tries given byar,k. Following [16],W1 is chosen so that it
possesses the following properties:

1. 1T
NW1 = 1

T
N , where1N ∈ R

N is the vector of ones.
2. W11N = 1N .
3. λ(W1 − 1N1

T
N/N) < 1, whereλ(·) stands for the

maximum eigenvalue of the respective matrix.

The same assumptions also hold for the matrixW2 with en-
tries br,k. Methodologies for constructing the combination
matrix, so as to fulfil the previously mentioned assumptions
in a decentralized fashion, have been proposed in [16].

The noise termηk follows the Gaussian distribution
N(0l, σ

2
kIl), ∀k ∈ N , whereσ2

k is the noise variance at

the k–th node, which is assumed to be bounded by a finite
constant∀k ∈ N , and0l, Il are thel × 1 vector of zeros and
the l × l identity matrix respectively. Moreover, the noise
terms are spatially independent over the nodes.

Since the vectorsηk are independent over the nodes,
and their variance is bounded, the strong law of large num-
bers ensures that(1/N)

∑N
r=1 ηr, N → ∞ converges

almost surely to its expected value which is zero. Fur-
thermore, the assumptions imposed onW1 in conjunction
with the results of [16, 17], imply thatyk,n converges to

its meanlimn→∞ yk,n = (1/N)
∑N

r=1 yr. We replaceyk

from (1) to obtainlimn→∞ yk,n = ((1/N)
∑N

r=1 Ar)h∗ +

(1/N)
∑N

r=1 ηr or limn→∞ yk,n ≈ limn→∞ Ak,nh∗. The
last relation holds due to the properties ofW1, and the fact
that (1/N)

∑N
r=1Ar is the limit of the sequence defined in

step 2 of table 1. For the derivation of the Theorem we will
make the approximation that after a large number of itera-
tions,n0, the previously mentioned limits hold,i.e., yk,n ≈

((1/N)
∑N

r=1 Ar)h∗ ≈ Ak,nh∗, ∀k ∈ N , ∀n ≥ n0.

Theorem 1. Under the previous discussion and a restricted
isometry assumption with constantδ3s < 1

3 , ∀k ∈ N , for the

matrix (1/N)
∑N

r=1Ar, it holds that

‖hn+1 − h∗‖`2 ≤ ρ‖hn − h∗‖`2 , (4)

where ρ = maxk∈N

{√
8δ2

3s

1−δ2
2s

}
< 1,

hn = [hT
1,n, . . . ,h

T
N,n]

T ∈ R
Nm andh∗ = [hT

∗ , . . . ,h
T
∗ ]

T ∈

R
Nm.

Proof: The proof will be presented in a forthcoming ex-
panded version of this work.

3.2. Blind Diffusion Pursuit Algorithm

This section addresses the problem of sparse blind identifica-
tion in distributed networks. The proposed algorithm relies
on a distributed one step greedy scheme and relies on higher
order cumulants.
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Table 2. The BlinD distributed Pursuit Algorithm

Algorithm description Complexity
While i < Consensus Iterations

1: ˆ̄c
(k,i)
py (m, τ ) =

∑
r∈Nk

ar,kc̄
(r,i−1)
py (m, τ ) O(|Nk|m)

2: i = i+ 1
End While
3: Sk = supps

(
ˆ̄c
(k,i)
py (m,τ )

)
O(m)

While i < Consensus Iterations

4: Ĉ
(k,i)
Sk|Sk

=
∑

r∈Nk

br,kC
(r,i−1)
Sr|Sr

O(|Nk|s
2)

5: i = i+ 1
End While
6: Ĉ

(k,i)

Sk|Sk
= UkΣkV

T
k O(s3)

7: ĥk|Sk
= u1,1σ1,1v1:s,1, ĥ|SC

k
= 0

In a centralized operating mode, an one step greedy algo-
rithm is presented in [18]. Following similar rationale as in
[18], we consider the system:

yk,n = aT
k,nh∗ + ηk,n, ∀k ∈ N , n = 1, . . . , l, (5)

whereyk,n is the output,ak,n = [ak,n, . . . , ak,n−m+1]
T is

the input andηk,n is the noise process. The previous data
generation model can be written compactly in a matrix–vector
form as in (1). Thepth order output cumulant of Eq. (5), (the
single system case) when driven by a stationary independent
and identically distributed white noise process, is given by the
Brillinger–Roseblatt formula:

cpy(τ1, . . . , τp−1) = γpx

m∑

i=0

h∗,i

p−1∏

j=1

h∗,i+τj , (6)

whereh∗,i is thei–th coefficient of the vectorh∗ andγpx is
thepth order cumulant of the input withcpx(τ1, . . . , τp−1) =
γpxδ(τ1, . . . , τp−1). To avoid the inherent scaling ambiguities
that exist in blind identification algorithms, it is assumedthat:
(a) h∗,0 = 1, (b) γpx 6= 0 and (c)h∗,m 6= 0. The support
set of the unknown signal is chosen using output cumulant
information at properly selected lags of the form

c̄py(m, τ) = cpy(m, τ, 0, . . . , 0) = γpxh∗,mh∗,τh
p−2
∗,0

= γpxh∗,mh∗,τ , with τ = 0, . . . ,m. (7)

Therefore collecting all cumulant information of Eq. (7) in
a vector,c̄py(m, τ ), gives rise to the cumulant proxy where
its dominant in magnitude positions reflect the support set of
h∗ [18]. The next step is to restrict the estimation step to the
identified support set,S. The estimation method can be any
of the ones reported in [12, Chapter 7]. Here we adopt the m–
SVD which is found in Table 2 steps 4–5 whoseijth element
of Ĉ(k,0)

Sk|Sk
= c4y(m, i, j) with 0 ≤ i, j ≤ m [18].

A weakness of the above algorithm, is that in practice
the true cumulants are replaced by sample cumulants, de-
noted byĉpy(τ1, . . . , τp−1). Sample cumulants are estimated

from output observations of finite length, which introduce
bias/variance distortion. A well known techniques to tackle
bias/variance distortion is the segmentation of the observed
data into non–overlapping records. More specifically, sam-
ple cumulant estimates are obtained from each segment, and
then averaged across the segments to obtain estimates of low
bias/variance. Such an operating mode arises naturally in dis-
tributed networks, where each node has its own measurements
and can exchange/combine them with other nodes. There-
fore, the first algorithm of [18] is next modified to operate
in a distributed fashion, where cooperation helps it reduce
bias/variance problems.

The algorithm outlined in Table 2 consists of four major
steps. In the first step, it runs distributed averaging consensus
iterations over the network,i.e. computes the average of the
sample cumulant proxy vector, given at the nodes (see Step
1). Distributed averaging is performed as outlined in section
3.1. More specifically, for a user–defined number of itera-
tions, the nodes exchange information with the neighborhood
and fuse them using the combination weights. Afterwards, the
network comes approximately to consensus or agreement to a
common cumulant proxy vector. Then in Step 3., each node
performs hard thresholding to thes–largest indices of the cu-
mulant proxy vector in order to identify the support set,Sk,
of the unknown signal. These two steps constitute the subset
selection mechanism for the outlined algorithm. Next, comes
the greedy update and as before (Step 4.) a distributed aver-
aging iteration is performed to the cumulant matrix restricted
on the identified subsetC(k,i)

Sk|Sk
, which is required for identifi-

cation. Finally, the last two steps estimate the unknown signal
using the techniques outlined above.

4. COMPUTER SIMULATIONS

In the first experiment, the DiHaT is compared to the Dlasso
proposed in [7]. Moreover, the performance of the DiHaT
is validated in a scenario where the nodes do not cooperate
with each other, or in other words they produce estimates re-
lying solely on their local input–output measurements. A net-
work with N = 20 nodes is considered, the dimension of
the unknown vector equals tom = 70 and the number of
measurements at each node isl = 55. Furthermore, for the
unknown vector we have that‖h∗‖`0 = 10. The input ma-
trix Ak follows the Gaussian distribution with zero mean and
variance1. Moreover, the noise is generated with respect to
the Gaussian distribution and a Signal to Noise Ratio (SNR)
at each node equal to 20 dB. The combination coefficients
ar,k, br,k are selectedby the Metropolis rule [16]. The per-
formance metric which is presented is the average normal-
ized Mean Square Deviation which equals toMSD(n) =
1
N

∑
k∈N

‖hk,n−h∗‖
2

`2

‖h∗‖2

`2

and the curves result from an averag-

ing of 100 independent Monte Carlo runs. The first computer
experiment tests the proposed training based method versus
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Fig. 1. Average MSD Performance of the proposed algorithms

Dlasso. The regularization parameter, which is user defined
in the Dlasso, is computed via a cross validation procedure,
as proposed in [7]. Fig. 1.a illustrates that the DiHaT out-
performs the Dlasso, in the sense that it converges faster to
a similar error floor. Furthermore, the DiHaT in the non-
cooperative scenario converges to a higher error floor, which
indicates that the cooperation among the nodes enhances the
results. It should be pointed out that the Least Squares oper-
ation of the DiHaT takes place in the identified support set,
which reduces significantly the dimensionality, in contrast to
the Dlasso, where all the operations take place in the original
space of dimensionm.

In the second experiment, the performance of the BlinD
distributed pursuit is examined. To this end, the perfor-
mance of the proposed blind scheme is compared to the
non–cooperative scenario. The network consists ofN = 20
nodes,m = 50, s = 5 and the SNR equals20 dB. The input
is an independent and identically distributed QPSK signal.
The number of consensus iterations at each node is20. Fig
1.c illustrates that the cooperation among the nodes improves
the performance of the algorithm, since a better MSD can be
obtained even if the number of measurements is small, at the
expense of the extra computational complexity coming from
the consensus iterations.

5. CONCLUSION

In this paper, two novel algorithms for distributed sparse vec-
tor estimation are proposed. The first is suitable for training
based operation, whereas the second operates blindly. Both
algorithms follow the greedy principle. Theoretical results of
the training based scheme are discussed, and the performance
of the algorithms is validated through experiments. Future
research will be focused on sparse blind algorithms for non-
linear systems.
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