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ABSTRACT

In this paper, we analyse (censored) cooperative spectrum

sensing for cognitive radios (CRs) where, in order to save

power, each CR only transmits its test statistic to a fusion

center (FC) if the test statistic is greater than some threshold

(ξ). One problem with this approach is that, it is possible that

no test statistics may be transmitted. The solution that we

propose here is to choose an optimum test statistic threshold

(ξ = ξopt) to avoid (probabilistically) no test statistic being

transmitted to the FC. We also propose the additional power

saving approach where only if the required CR transmit

power (Pi, to achieve a required SNR at the FC) is less

than some optimum transmit threshold (Pt = Ptopt) do

we transmit the test statistic. We then show the effect of

(ξopt, Ptopt) on both the detection performance at the FC (us-

ing selection combining) and the total CRs transmit power.

Finally, simulation results show this approach mitigates the

original problem (in an energy efficient way) of no CR test

statistic being transmitted to the FC.

I. INTRODUCTION

Cognitive radio (CR) is a very effective technology for

dealing with a spectrum scarcity that has resulted from the

rapid development of wireless communication technology

[1] and [2]. The unlicensed device/secondary user attempts

to harness the licensed band/primary band opportunistically

in a manner that the primary receiver is protected from

any harmful interference. But local spectrum sensing is

not enough when there is a fading channel. So in the

literature cooperative spectrum sensing (CSS) has been pro-

posed [3], [4] and [5]. In CSS, each cognitive radio reports

its measurement/test statistic to the FC. The reported test

statistics consume power and this power consumption might

be significant if the number of cognitive radios is large. Thus

power consumption needs to be considered in CSS design.

Many papers currently deal with the issue of power

consumption. For example, in [6] and [7], the concept of

a censoring (sending only test statistics that are larger than

a local threshold (ξ)) was introduced to reduce the number of

transmitted test statistics and thus save energy. This approach

showed a slight performance degradation compared with

uncensored cooperative detection. However in [6] and [7],

the geometry of the CRs (i.e., the spatial distribution of

CRs with respect to the primary user or the FC) was not

considered. Also, the number of CRs was assumed known.

All those assumptions are not realistic.

In censored cooperative sensing, problems can arise if the

FC does not receive any test statistic from the CRs because

the threshold ξ is set too high. As a result, the detection

performance at the FC might degrade. Also this this issue

has not been taken into account in [6] and [7].

To further reduce energy consumption we will also in-

troduce an additional parameter, Pt - the transmit power

threshold. We will only transmit a test statistic from the CR

if Pi ≤ Pt, where Pi is the CR transmit power necessary to

acheive a required SNR at the FC. But with a poor channel,

Pi will be large and it may not satisfy Pi ≤ Pt. So once

again, no test staistics may be received at the FC.

To address this issue, we propose to examine the activity

probability (pa) which is the probability that at least one

test statistic is received by the FC. In this paper, we aim to

find the optimum test statistic threshold (ξ = ξopt) and the

optimum transmit power threshold (Pt = Ptopt) so pa → 1.

Simulation results will show that this approach mitigates the

original problem of no test statistic being transmitted (in an

energy efficient way).

So the contributions of this paper can be summarised as

follows. First, we find by simulation both the ξopt and the

Ptopt such that pa → 1 (with a considerable saving power).

Second, the detection performance of a selection combining

based FC for an unknown number of CRs (with small-scale

fading and pathloss) is theoretically derived. Finally, the

average power that is needed to transmit the test statistics to

the FC is obtained analytically.

The rest of this paper is organized as follows. The system

model is introduced in Section II. Cooperative spectrum

sensing (CSS) is presented in Section III. In Section IV,

we derive both probability of false alarm and detection for

selection combining based data fusion is described. Power

consumption is analyzed in Section V. Results and discussion

are given in Section VI. Finally, in Section VII we present

our conclusions.
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II. SYSTEM MODEL

II-A. Primary and secondary network models

We consider that the secondary users/cognitive radios are

distributed in a plane according to a homogeneous Poisson

point process (PPP), i.e., Φ with intensity λ. The probability

of n secondary users being inside an area A ∈ R2 is

characterized by

Prob{n users in A} =
(λA)n

n!
e−λA, n ≥ 0. (1)

The location of the ith cognitive radio is denoted by (xi, yi)
and it is uniformly distributed inside the area A. The

cognitive radios are supervised by the FC located in the

center of the area A. For the primary network, we consider

a single primary user located at the origin. We also assume

that the FC is located at a distance Rx from the primary

user.

II-B. Channel model

The channel between the ith cognitive radio and the

primary user is modeled by Hil(xi, yi), where Hi is an

exponential random variable with a unit mean (modeling flat

fading) and l(xi, yi) is the path loss between the location

(xi, yi) and the primary user. This can also be written

in terms of the path loss exponent α, and the frequency

dependent constant κ, i.e., l(xi, yi) = κ
(x2

i
+y2

i
)0.5α . For

simplicity, we assume κ = 1.

II-C. Received signal model

The ith cognitive radio inside the area A receives either

noise (H0) or a primary signal plus noise (H1) dependent

on the activity of the primary network. So mathematically

the signal received by the ith cognitive radio is given by the

following two hypotheses:

H0 : yi(m) =vi(m)

H1 : yi(m) =
√

Hil(xi, yi)s(m) + vi(m) (2)

where m = 0, 1, 2, ..., M − 1; M is the number of samples

collected by the ith cognitive radio; yi(m) is the signal

received by ith cognitive radio; vi(m) is i.i.d. circularly

symmetric complex Gaussian noise, (CN(0, σ2
v)); s(m) is

the (unit power) primary signal which is randomly and

independently drawn from a complex constellation with unit

power.

III. COOPERATIVE SPECTRUM SENSING

We consider that the ith cognitive radio employs an energy

detector. It compares the test statistic (TEDi) with the local

threshold ξ, where TEDi =
∑M−1

m=0 |yi(m)|2
/

M . Only if

(TEDi > ξ) is satisfied will the test statistic to be sent to

the FC. In this paper we will evaluate the performance of
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Fig. 1. The activity probability (pa) versus the local thresh-

old (ξ) for Pt = 300.

a selection combining data fusion center. Thus a global test

statistic (Tmax) will be chosen as follows:

Tmax = max
(xi,yi)∈Φ

TEDi>ξ

(

TEDi

) H0

≶
H1

τ (3)

where τ is the global threshold. The idea behind the local

threshold at each CR is to save power by transmitting only

the most ‘robust’ test statistics to the FC.

To save additional power we introduce another parameter

which is a transmit power threshold (Pt). To send the test

statistic TEDi to the FC, the required transmit power Pi for

the ith cognitive radio should satisfy Pi ≤ Pt where

Pi =
Pref

Gij(xi, yi)
. (4)

Note that (4) is to guarantee that the received power at

the FC is Pref . Here j(xi, yi) is the path loss between

the ith cognitive radio and the FC and Gi is a unit power

exponential random variable representing the small-scale

fading between the ith cognitive radio and the FC. So the

test statistic in (3) with the condition in (4) now becomes

Tmax = max
(xi,yi)∈Φ

TEDi>ξ
Pi≤Pt

(

TEDi

) H0

≶
H1

τ. (5)

As we mentioned earlier, there exists a probability (be-

cause of the choice of ξ and Pt) that no test statistic might

be sent to the FC and so the detection performance could be

degraded. So we define the activity probability (pa) as the

probability that at least one test statistic is received by the FC

under H1. Here we need pa → 1 to avoid any degradation

in the detection performance, and so we will examine how

the choice of ξ and Pt affects pa.
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Fig. 2. The activity probability (pa) versus the transmit

power threshold (Pt) for ξ = 6.1 × 10−3.

Fig. (1)1 shows a plot of pa versus the ξ. If ξ is very small

then pa → 1 and so a significant number of test statistics

will be sent to the FC. Accordingly, a lot of power would be

consumed. Also from Fig. 1, if ξ is very large, it means pa→
0 and this is desirable from a power saving point of view

but it is undesirable from a detection point of view. Thus

ξ should be chosen as large as possible such that pa ≈ 1.

We call this maximum threshold an optimum local threshold

(ξ = ξopt).
The choice of parameter Pt also effects pa. This can also

be seen in Fig. 21 which shows a plot of pa versus the

Pt. We can see that when Pt is small pa is also small.

In terms of saving power this is desirable but in terms of

detection performance it is not. However, if Pt is large, then

pa → 1 and this will increase the power consumption. But

for the detection performance it is desirable. Motivated by

the above explanation, then Pt should be chosen as small

as possible such that pa ≈ 1. We call this minimum trans-

mit power threshold the optimum transmit power threshold

(Pt = Ptopt). Therefore, ξopt and Ptopt should satisfy the

following condition:

(ξopt, Ptopt) =
{

max ξ and min Pt such that

pa(ξopt, Ptopt) ⋍ 1
}

.
(6)

IV. DETECTION PERFORMANCE ANALYSIS (NO

POWER CONSTRAINT)

In this section we derive the false alarm probability (pFA)
and the detection probability (pD) performance for (3) (for

(5) the analysis is not tractable) in the case when (6) is

satisfied. When the CRs send their test statistics (TEDi >

1Figs. 1 and 2 are ploted for the system parameters defined in Section
VI.

ξopt) to the FC it applies selection combining so that the

pFA can be written as

pFA = Prob(Tmax > τ
∣

∣H0) (7)

because all the secondary users are independent. Now (7)

can be written as

pFA = 1 − EHi,Φ

[

∏

(xi,yi)∈Φ

TEDi>ξopt

Prob(TEDi < τ
∣

∣H0)
]

. (8)

where TEDi under H0 is a sum of the squares of 2M

Gaussian random variables with zero mean, . Therefore,

TEDi follows a central chi-square distribution with 2M

degrees of freedom. So Prob(TEDi < τ
∣

∣H0) = 1−
Γ(M, 2τ

σ2
v

)

Γ(M) ,

where Γ(.) and Γ(., .) are gamma function and incomplete

gamma function respectively. Thus (8) can be written as

pFA = 1 −EHi,Φ

[

∏

(xi,yi)∈Φ

TEDi>ξopt

(

1 −
Γ(M, 2τ

σ2
v
)

Γ(M)

)]

(9)

and by applying the generating functional of the Poisson

process in (9) [see [8], eq. (4.3.8)] so we arrive at

pFA = 1 − exp
(

−λA
Γ(M , 2τ

σ2
v
)

Γ(M )

)

. (10)

Note that (10) is independent from ξopt and so it will

not affect the detection performace as we will see in the

simulation results.

For the probability of detection (pD), it can be obtained

in a similar manner as pFA. Thus the test statistic TEDi

under H1 will have a noncentral chi square distribution

with 2M degrees of freedom and a non centrality parameter

ν = 2|Hi|
2l(xi,yi)
σ2

v
. So Prob(TEDi < τ

∣

∣H1) = 1 −
QM (

√
v,

√

2τ
σ2

v
), where QM (., .) is the generalized Marcum

Q-function (conditioned on the channels and the pathloss)

defined as follows,

QM (a, b) =

∫ ∞

b

xM

aM−1
exp

(

x2 + a2

2

)

dx.

So the probability of detection is

pD = 1 −EHi,Φ

[

∏

(xi,yi)∈Φ

TEDi>ξopt

(

1 − QM (
√

v,

√

2τ

σ2
v

)
)]

. (11)

Then by applying the generating functional of the Poisson

process in (11) [see [8], eq. (4.3.8)], we arrive at

pD = 1 − exp

(

−λ

∫

A

∫ ∞

0

QM (
√

v ,

√

2τ

σ2
v

)dH dxdy

)

.

(12)

The inner integral (the average pD over flat fading ) is

derived in [[9], equation (20)]. So after substituting [[9],

equation (20)] into (12) (conditioned on distance) it can be

evaluated in one integral instead of two.

3
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V. AVERAGE TOTAL POWER CONSUMPTION

In this section, we derive the average total power con-

sumption E[△(ξ, Pt)], where △(ξ, Pt) is the secondary

network’s total power that is needed to transmit the test

statistics to the FC. We derive the average total power for

two scenarios.

• Scenario I: The first scenario is when the primary user

is absent. In this scenario, the total power is given by

∆0(ξ, Pt) =
∑

(xi,yi)∈Φp

TEDi

∣

∣H0>ξ

Pi. (13)

Here (Φp) is the set of transmitting secondary users

that satisfy Pi ≤ Pt. In this scenario, Prob(TEDi >

ξ
∣

∣H0) =
Γ(M,

2ξ

σ2
v

)

Γ(M) . Also, the transmitting secondary

users Φp constitutes a non-homogeneous PPP with an

intensity

λ0(x, y) =
λΓ(M, 2ξ

σ2
v
)

Γ(M)
Prob(P < Pt )f(G)

where the subscript ‘i’ is dropped from Pi; and f(G)
is the probability density function for the small-scale

(power) fading of the channel gain, G. Thus the average

total power when the primary user is absent is given by

E
[

△0(ξ,Pt )
]

= λPref

Γ(M, 2ξ
σ2

v
)

Γ(M)

∫

A

G
j(x, y)

dA (14)

where G =
∫ ∞

Pref

j(x,y)Pt

G−1exp(−G)dG and we em-

ployed the following result [see [8], eq. (4.2.4)].

• Scenario II: The second scenario is when the primary

user is present. In this scenario, the total power is given

by

∆1(ξ, Pt) =
∑

(xi,yi)∈Φp

TEDi

∣

∣H1>ξ

Pi (15)

where the transmitting secondary users Φp constitute a non-

homogeneous PPP with an intensity

λ1(x, y) = λQM (
√

v,

√

2ξ

σ2
v

)Prob(P < Pt )f(G).

Thus the average total power when the primary user is

present is given by

E
[

△1(ξ,Pt )
]

= λPref

∫

A

∫ ∞

0

GQM (
√

v ,
√

2ξ
σ2

v

)

j (x , y)
dHdA.

(16)

If we denote the activity of the secondary network by

P (H0), then the average total power of the secondary

network for sending the test statistics to the FC is given

by

E[△(ξ,Pt )] = P (H0)E
[

△0(ξ,Pt )
]

+ P (H1)E
[

△1(ξ,Pt )
]

(17)

where P (H0) = 1 − P (H1).

VI. RESULTS AND DISCUSSION

In this paper, due to space limitations, we cannot show

the effect of all the parameters on the detection performance

or the power consumption. So we present some selected

results to highlight the effect of choosing ξ and Pt on

both the detection performance and the average total power

consumption. We define the average signal to noise ratio

at the FC by SNR = 10log10(
1

σ2
vRα

x
) dB. (ξopt, Ptopt) =

(6.1×10−3, 300) (from Fig. 1 and Fig. 2). Also, we consider

the following system parameters Rx = 30, α = 3, Pref = 1,

λ = 0.01, 105 Monte Carlo runs, P (H1) = 0.2 and

A = 30 × 30.

First, Fig. 3 presents the detection performance of CSS

for the case of no power constraint see ((10) and (12)). For

ξ ≤ ξopt means that (6) is satisfied (and probabilistically we

avoid the case of no test statistic being transmitted). For ξ >

ξopt, (6) is not satisfied and the curve is ploted by simulation.

Now it can be observed that the detection performance does

not change for ξ ≤ ξopt and detection degradation appears

for ξ = 0.007 because pa is low (as can be seen from Fig.

1). Note that for ξ = 0.007 the curve stops at pFA = 0.05,

because no test statistics (as we previously discussed) are

sent to the FC (which then decides ‘no primary use’). So

the curve stops at pFA = 0.05.

Second, Fig. 4 shows the detection performance of CSS

for no power constraint see ((10) and (12)) and for power

constraint (simulation). It can be observed that the detection

performance is best when there is no constraint on the CR

transmit power, but in practice this cannot occur. Also, we

can see the degradation of detection performance for Pt =
50 and this is because pa is low (as can be seen from Fig.

2). Note that for the plot for Pt = 50 in Fig. (3) the curve

stops at around pFA = 0.2. This is again because of the no

test statistic transmitted problem. Also, we can see that the

detection performance improves with Pt.

Finally, we plot E[△(ξ, Pt)] versus (ξ) (see - (17)) for

different values of Pt. Now Pt = Ptopt is the most

energy efficient parameter choice compared with other Pt

values. Moreover, it is easily seen that as the ξ increases

as E[△(ξ, Pt)] decreases. In practice, the designer could

choose ξ = ξopt and even Pt > Ptopt to have a reasonable

detection performance and the problem of no test statistic

being transmitted to the FC is overcome with a considerable

saving of transmit power.

VII. CONCLUSION

We have investigated, both analytically and via simulation,

the performance of censored cooperative spectrum sensing

(CSS) using stochastic geometry to model the secondary

users. In particular, we examined how those of the CR test

statistic threshold (ξ) and the transmit power threshold (Pt)
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Fig. 3. The probability of detection (pD) versus the proba-

bility of false alarm (pFA) for different values of ξ. In all

cases, SNR = −10dB.
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Fig. 4. The probability of detection (pD) versus the proba-

bility of false alarm (pFA) for different values of Pt. In all

cases, SNR = −10dB.

effect overall performance in terms of energy consumption,

pFA and pD. By optimizing (ξ, Pt) we have also shown (for

the first time) how to avoid (in an energy effecient way) the

limitation of censored CSS where by no test statistic might

be transmitted to the FC.
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