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ABSTRACT This paper considers a polynomial post-nonlinear mixing
i i . model (PPNMM) that has recently shown interesting proper-
This paper presents a nonlinear mixing model for hyperspegies for the SU of hyperspectral images [6]. Precisely, vee pr
tral image unmixing. The proposed model assumes that thg,se 4 fully unsupervised Bayesian unmixing algorithm 8ase
pixel reflectances are post-nonlinear functions of unknowny, the PPNMM (estimating jointly the endmembers and the
pure spectral components (referred to as endmembers) COffher model parameters). However, the classical Bayesian e
taminated by an additive white Gaussian noise. The no”””e"i‘imators cannot be easily computed from the PPNMM pos-
effects affecting endmembers are approximated by polynQgyior gistribution. To alleviate this problem, a Markovadt

mial functions leading to a polynomial post-nonlinear mxi  \15nte Carlo (MCMC) method is used to generate samples ac-
model. A BayeS|ar_1 str.ategy Is used tq esumatg the paramEOrding to this posterior. Due to the large number of param-
ters of this model yielding an unsupervised nonlinear URMIXgters to be estimated we propose to use Hamiltonian Monte
ing algorithm. Due to the large number of parameters 10 b@ 5y (HMC) moves within a Gibbs sampler. HMCs are sim-

estimated, an efficient constrained Hamiltonian Markourtha ,|ation strategies based on Hamiltonian dynamics which can
Monte Carlo method is developed to sample according to theg,,ve the convergence and mixing properties of classical
pos.terlor of.the Bayesian _model. The performan_ce of the 'SCMC methods [7]. We investigate recent HMC methods

sulting unmixing strategy is evaluated on synthetic data. handling constrained variables [7, Chap. 5] that can be ap-

Index Terms— Hyperspectral imagery, spectral unmix- plied to our Bayesian model for spectral unmixing.
ing, Hamiltonian Monte Carlo, post-nonlinear model. The paper is organized as follows. Section 2 introduces
the PPNMM for hyperspectral image analysis. Section 3
presents the hierarchical Bayesian model associated méth t
1. INTRODUCTION proposed PPNMM and its posterior distribution. A Gibbs
o ] ) o sampling strategy coupling standard simulations (acogrdi
Identifying macroscopic materials and quantifying the-pro y the full conditional of the posterior) and constrained &M
portions of these materials are major issues when analyzi HMC) moves is presented in Section 4. Simulation re-
hyperspectral images. This spectral unmixing (SU) problenyits conducted on synthetic data are shown and discussed in

has been widely studied for applications where the pixel regection 5. Conclusions are finally reported in Section 6.
flectances are linear combinations of pure component spec-

tra. However, as explained in [1], the linear mixing model

(LMM) can be inappropriate for some hyperspectral images. 2. PROBLEM FORMULATION

Nonlinear mixing models provide an interesting alterrativ

for overcoming the inherent limitations of the LMM. Several 2.1. Polynomial Post-Nonlinear Mixing Model

models have been studied in the literature to handle specific ) ) o )
kinds of nonlinearities. In particular, the bilinear moglet- ~ This section recalls the nonlinear mixing model used in [6]
cently studied in [2-5] address the problem of scattering effor hyperspectralimage SU. We consider a seVajbserved
fects, mainly observed in vegetation or urban areas. OthéPeCtrayn = [yn.1, .. S Ynl’in€ {1, N} whereL is
more flexible unmixing techniques have been also proposeif€ number of spectral bands. Each spectrum is defined as
to handle wider class of nonlinearities, including radiasis @ nonlinear transformatiog,, of a linear mixture ofk end-
function networks and kernel-based models. membersm,. contaminated by additive noise
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wherem, = [m,1,...,m,]7 is the spectrum of the 3. BAYESIAN MODEL

rth material present in the scene,,, is its corresponding

proportion in thenth pixel, R is the number of endmem- This section generalizes the hierarchical Bayesian maodel i
bers contained in the image amg, is a nonlinear func- troduced in [6] to estimate the unknown parameter vector
tion associated with theth pixel. Moreover,e, is an ad- associated with the PPNMM containing the reparameterized
ditive independent and identically distributed (i.i.d)rae abundanceZ = [zi,..., zy], the endmember matrixi, the
mean Gaussian noise sequence with variaricelenoted as nonlinearity parameter vectdr and the additive noise vari-

e, ~ N (07,07 ). Note that the usual matrix and vector anceo?. This section summarizes the likelihood and the pa-
notationsM = [my,...,mg| anda, = [ain,...,ar,])T  rameters priors that are used for this estimation.

have been used in the right hand side of (1). As in [6],/he

nonlinear functiongy,, are defined as second order polyno-3.1. Likelihood

mial nonlinearities defined by,, (s) = s + b, (s ®s), where

s € RL, b, is a real parameter, and denotes the Hadamard Assuming prior independence between the observed pixels
(termwise) product. An interesting property of the resigti  and using (2), the joint likelihood of the observation matri
PPNMM is that it reduces to the classical LMM fay = 0. Y can be expressed as

Motivations for considering polynomial nonlinearitiesviea T
been discussed in [6]. Straightforward computations allow f(y|M, Z,b,0%) x o~ VFetr ¥ -X) gY — X)
the PPNMM observation matrix to be expressed as follows 20

(6)
Y = MA + [(MA) ® (MA)]diag(b) + E (2) wherex means “proportional to"etr(-) denotes the expo-
nential trace andX = MA + [(MA) © (MA)]diag(b) is

where A = J[a,...,ay] is an R x N matrix, Y = anl x N matrix
[yi,...,yn] andE = [ey,...,ey] are L x N matrices, '
andb = [by,...,bn]T is an N x 1 vector containing the )
nonlinearity parameters. Moreover, didg is anN x N  S-2. Parameter priors
diagonal matrix containing the elements of the veétor To reflect the lack of prior knowledge about the abundances,
we propose to assign a prior distribution to the veetpren-
2.2. Abundance reparametrization suring thata,, is uniformly distributed in its definition do-
Due to physical considerations, the abundance veatpsat- ;n:iu)nr I\E/Io{rle prec;%s e_Iyl }W:ngs;%rl]rgitzr?;@iﬁe;eﬁ S(e]f\ c_e be-
isfy the following positivity and sum-to-one constraints tween the elements of,. As explained in [8], this choice
R yields an abundance vectar, uniformly distributed in the
> arn =1, arn>0,Vrefl,...,R}. (3)  setS. Assuming prior independence between the coefficient
r=1 vectors{z,},_, yleadsto
To handle these constraints, we propose to reparametbéaze t
abundance vectors belonging to the set at 1 N e
1@ =11 ss——x ]2 @)
R r=1 B(R -n 1) n=1
S=<a=]ay,...,ar]" |a, >0,Zar =1
— whereB(, -) is the Beta function.
_ T ; _
using the following transformation Each endmembem, = [my,...,mni]" is are
flectance vector satisfying the following constraints
r—1 .
1—2z., fr<R
am:<kl:[12k,n>x{ L " w.R (4) 0<m,e<1,¥re{l,...,R},¥eec{l,...,L}. (8)

This transformation has been recently suggested in [8]. Th'éOr each endmemben,,, we propose to use a Gaussian prior

T : . .
main motivation for using the latent variables,, instead of truncated orj0, 1] to satisfy the constraints (8), i.e.,

ar p, IS the fact that the constraints (3) (for thth abundance m, ~ N1z (m,, $21L). 9)
vectora,,) express as
0<zm<l, Wre{l,..,R—1} (5) Th_|s prior requ2|res to define the mean vectans and _the
noise variance“. We propose to select the mean vectors
for thenth coefficient vector,, = [21.,,...,2r-1.,]7. Asa  as the pure components previously identified by the nonfinea

consequence, the constraints (5) are much easier to hamdle EEA studied in [9] and referred to as “Heylen”. The variance
the sampling procedure than (3). The next section presenté reflects the degree of confidence given to this prior infor-
the Bayesian model associated with the PPNMM for SU.  mation 2 = 50 in our simulations).



The PPNMM reduces to the LMM fdr, = 0. Since the Unfortunately, it is difficult to obtain closed form expres-
LMM is probably relevant for most observed pixels it makessions for the standard Bayesian estimators associated with
sense to assign prior distributions to the nonlinearitppae-  (13). Thus we propose to generate samples asymptotically
ters that enforce sparsity for the vector Consequently, the distributed according to (13). Due to the large number of
following conjugate Bernoulli-Gaussian prior is assigried parameters to be sampled, we use HMC moves which allow
each parametéer, the number of sampling steps to be reduced and the mixing

) properties of the sampler to be improved. The basic priesipl

Fbnlw, 02) = (1= w)d(ba) + 1 exp (_bnz> (10) of the HMC methods thgt are used to sample asymptotically

/2o 20}, from (13) can be found in [11]. The generated samples are

then used to compute the MMSE estimatorfof The next

where(-) denotes the Dirac delta function. Note that thesection defines the Gibbs sampler (including constrained
prior distributions for{b, },_, , share the same hyperpa- HMC moves) used to sample from (13).
rametersw € [0, 1] ando? €]0, +o0[. Moreover, the weight
w is the prior probability of having a nonlinearly mixed pixel 4. GIBBS SAMPLER
in the image. Assuming prior independence between the non-
linearity parametergb,, },,_, , the joint prior distribution  The principle of the Gibbs sampler is to sample according to
of the nonlinearity parameter vectbis given by the conditional distributions of the posterior of inter2,
Chap. 10]. Due to the large number of parameters to be es-

N
timated, it makes sense to use a block Gibbs sampler to im-
blw.o?) = bn, 2. 11 ’ -

f(Blw, o) 7[11 f(nlw, ) (11) prove the convergence of the sampling procedure. More pre-

a cisely, we propose to sample sequentidly Z, b, 02, o7 and

A Jeffreys’ prior is assigned to the noise variance w using six moves that are detailed in the next sections.

flo?) %| +(0?) (12) 4.1. Sampling the coefficient matrixZ
g

Sampling fromf(Z|Y,M, b, 02, o, w) is difficult due to the
complexity of this distribution. In this case, it is classito
use an accept/reject procedure to update the coefficienkmat
3.3. Hyperparameter priors Z (leading to a hybrid Metropolis-within-Gibbs sampler). It

The performance of the proposed Bayesian model for spectrﬁfJln be shown that
unmixing depends on the values of the hyperparametgrs
andw. When the hyperparameters are difficult to adjust, it is (
classical to include them in the unknown parameter veater, r
sulting in a hierarchical Bayesian model [6,10]. A conjegat i-€., theN coefficients vector§z, },_,  , area posteriori
inverse-gamma prior is assignedctﬁy ie., gg ~ IG (y,v) independent and can be sampled independently (in a parallel
where (v, ) are real parameters fixed to obtain a flat priormanner). Straightforward computations lead to

which reflects the absence of knowledge for this parameter.

N
ZIY,M,b,0% 0, w) = [ [ f(znlyn, M, bs,0?), (15)

n=1

for the variancer? ((vy, v) will be set to(10~*,107") in the lyn — 2n?
simulation section). A uniform prior distribution is assag f(zn|yn. M, by, 02)  exp (—}’"22”)
to the hyperparameter, i.e.,w ~ Uy 1)(w) since there is no A 7
apriori information regarding the proportions of linearly and —r—

pri : regarging the prop y X 1g,1)r-1 (2n) H Zf,r ! (16)
nonlinearly mixed pixels in the image. .

wherez,, = g, (Ma,), 1)~ (-) denotes the indicator
function over(0, 1)~1. The distribution (16) can be related
The joint posterior distribution of the unknown parametersto a potential energy that is then used within a CHMC method

3.4. Joint posterior distribution

0— {Z7M7b’0'270'g’w} can be computed using to update the vectog,. For space limitations, we do not
detail this CHMC method. The reader is invited to consult a
f(01Y) o f(Y1]6)f(0) (13)  separate technical report for more details [11].

wheref(Y|0) has been defined in (6). By assumigriori
independence between the parame®&r, b and o2 and
between the hyperparametersandw, the joint prior distri-  From (13) and (14), it can be seen that
bution of the@ can be expressed as L
. . f(M‘Y7Zab>U27825M) = f(mf,:|yf,:aZ7ba025827m€,:)
£(6) = f(Z)f(M)f(0®) f(blop, w) f(op) f(w).  (14) g

4.2. Sampling the endmember matrixM



wherem, . (resp.m,,. andy, .) is the/th row of M (resp. of ~ with I; = {n|b, # 0}, no = ||bl|, (wWhere||-||, is the y
M andY) and norm, i.e., the number of elementstothat differ from zero)
andn; = N — ng. Similarly, we obtain
lye: — tell2>

202

2

2 _
Flmelyes; Z,b,0%, 5%, 0y, OCeXP( wlb ~ Be(ny + 1,n9 + 1). (22)

[y, — my .| Of course, sampling according to (21) and (22) is straightfo
X exp <_252) Loy (mg.) (17) ward.

The small number of sampling steps is due to the high
with ¢, = A'm,, + diag(b) [(A"m,.) ® (ATm,.)].  parallelization properties of the procedure used to ge¢eera
Thus, the rows of the endmember mathk can be sampled the N coefficient vectors{z,},_, . the N nonlinear-
independently similarly to the CHMC procedure described irity parameters{b, },_, _, and theL reflectance vectors
the previous section by introducing ttiepotential energies {mg.},_, ;. After generatingNyc samples using the

associated with eaaln, . (see [11] for details). moves detailed above, the MMSE estimator of the unknown
parameters can be approximated by computing the empiri-
4.3. Sampling the nonlinearity parameter vectorb cal averages of these samples, after an appropriate burn-in

period. The next section studies the performance of the

Using (13) and (14), it can be easily shown that the condiproposed algorithm for synthetic hyperspectral images.
tional distribution of,, [y, M, z,,, %, w, o} is the following

Bernoulli-Gaussian distribution 5 SIMULATIONS

bn n7M7 ny 27 72N1_ *5bn *N n72
y Zny 07w, 0~ (1= wp)0(bn) F 1w, (N (ng);) The performance of the proposed SU algorithm is first evalu-

ated by unmixing three synthetic imaghgs I, I3 with N =

where
2500 pixels. TheR = 3 endmembers observed At= 207
_of(yn — Ma,,)" h, s oio? different spectral bands and contained in these images have
n = ofhfhn FIPTI Sy = rhfhn g been extracted from _the _spectral libraries provided Wiﬂﬂ_ th
ENVI software. The first imagé, has been generated using
andh, = (Ma,,) ® (Ma,,). Moreover, the LMM. The imagel, has been generated according to the
PPNMM andI; has been generated according to the general-
N w ) pa, ized bilinear mixing model (GBM) presented in [5]. For each
w v Bn=—exp|— - (19)

image, the abundance vectors have been randomly generated

n Bn + w(l - /Bn) Sn
. ho. th dit | distributi 18) d t d according to a uniform distribution in the admissible set de
or eachb,,, the conditional distribution (18) does not de- fined by S, — {a ‘0 <a, <009, Zle a, =1} to ensure

pend on{by }, .. Consequently, the nonlinearity parameters ] e i )
{bn}.._, _ Can be sampled independently. that there is no pure pp(el in the'|mage's. All images have.
been corrupted by an i.i.d Gaussian noise sequence of vari-
ances? = 1074, corresponding to an average signal-to-noise
ratioSNR ~ 21dB for the three images. The nonlinearity co-
By considering the posterior distribution (13), it can bewh  €fficients are uniformly drawn in the sf 1] for the GBM.
thato2|Y, M, Z, b is distributed according to the following The parameters, have been generated uniformly in the set
inverse-gamma distribution [0.3,0.3] for the PPNMM.

Different estimation procedures have been considered for
NL tr ((Y - X)T(Y - X)) ) (20) the three mixing models. Two unmixing algorithms have been

,,,,,

4.4. Sampling the noise variance?

o considered for the LMM. The first strategy extracts the end-
members using the N-FINDR algorithm [14] and estimates
with tr(-) the matrix trace, from which it is easy to sample. the abundances using the FCLS algorithm [15] (it is referred
to as “SLMM” for supervised LMM). The second strategy is a
Bayesian algorithm which jointly estimates the endmembers
and the abundance matrix [10] (it is referred to as “ULMM”
Looking carefully at the posterior distribution (13), itche  for unsupervised LMM). Two approaches have also been con-
seen that?|b, v, v is distributed according to the following sidered for the PPNMM. The first strategy uses the nonlinear
inverse-gamma distribution endmember extraction algorithm (EEA) studied in [9] and the
gradient-based approach based on the PPNMM studied in [6]

%Y, M, Z,b~IG <

4.5. Sampling the hyperparametersr? and w

n b2
oilb,y,v ~1IG <21 +7, Z ?” + u) (21) The length of the burn-in period has been determined usingpppipte

nel, convergence diagnoses [13].



for estimating the abundances and the nonlinearity parameges. This algorithm assumed that each pixel of the image
ters. This strategy is referred to as “SPPNMM” (superviseds a post-nonlinear mixture of the endmembers contaminated
PPNMM). The second strategy is the proposed unmixing proby additive Gaussian noise. Due to the complexity of the
cedure referred to as “UPPNMM” (unsupervised PPNMM).posterior distribution associated with the proposed Biayes
The unmixing strategy used for the GBM is the EEA studiedmodel, constrained Hamiltonian Monte Carlo moves were in-
in [9] and the Bayesian algorithm presented in [5] for abun-<cluded into a Gibbs sampler to sample according to this poste
dance estimation. rior. The MMSE estimator of the unknown model parameters
The quality of the unmixing procedures can be evaluateavas then computed from the generated samples. Simulations
by the root normalized mean square error (RNMSE) definedonducted on synthetic data illustrated the interest optbe
by RNMSE — \/25:1 én — anHQ/(NR), wherea,, and posgd model fpr_ linear and nonl_inear spectral unmixing aljd
provided promising results. An important advantage of this
odel is its flexibility regarding the absence of pure pixels

a,, are the actual and estimated abundance vectors fartkthe

pixel of the image. Table 1 shows the RNMSEs associated ~ . ; S
with the imaged; to I; for the different estimation methods. a:e Image. Future WO”.( mclydes the estimation pf the nymber
of endmembers contained in the image and mixed using the

These results show that the UPPNMM performs better (in ronosed post-nonlinear mixing model
term of RNMSE) than the other considered unmixing methP"OP P 9 '
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