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ABSTRACT

The paper proposes a novel distributed two-stage resource al-
location technique for multiple-input multiple-output cogni-
tive radio links operating within an environment of multiple
multi-antenna primary links. Each primary link occupies ex-
clusively part of the resources and offers the opportunity to
coexistence. In the first stage, secondary links request pri-
mary resources and are either accepted or rejected based on
the preferences of the primary links. In the second phase, pri-
mary links price their interference temperature and an itera-
tive precoding optimization and price update algorithm is per-
formed. We show the existence of equilibria by showing that
the demand function fulfils the weak gross substitute prop-
erty. Numerical simulations illustrate an example matching
and resource allocation.

Index Terms— Resource allocation, MIMO, cognitive
radio, matching, exchange market

1. INTRODUCTION

Coexistence in wireless communications systems and effi-
cient resource allocation are required to support the increase
in the number of wireless devices and the associated wireless
data traffic.

One approach to increase the spectral efficiency is to dy-
namically utilize the free spectrum by cognitive radios [1, 2].
There exists a large body of research on spectrum allocation
in cognitive radio (CR) networks. One approach to systemati-
cally study the resource allocation problem is to apply pricing
and micro economics [3]. The spectrum market model and
its equilibrium are analyzed in [4] to develop a distributed
algorithm with best response and price dynamics. In [5], a
distributed algorithm to compute a market equilibrium in dif-
ferent network configurations is proposed.

Another approach is to utilize parts of the space which
are not occupied by primary users [6]. In order to model

This work has been performed in the framework of the European re-
search projects DIWINE and ACROPOLIS, which are partly funded by the
European Union under its FP7 ICT Objective 1.1 - The Network of the Fu-
ture. The work of P. Cao is supported by the China Scholarship Council
(CSC).

the conflict situation between secondary links, game theory is
successfully applied [7]. In [8], the authors study a compet-
itive game that each multiple-input multiple-output (MIMO)
CR link selfishly maximizes its own rate under an interfer-
ence leakage constraint. Nash equilibrium is achieved under
certain condition. In [9] the precoding, power allocation, and
spectrum allocation of MIMO links are considered and a pric-
ing based algorithm is derived by maximizing the sum rate
(throughput) of the secondary system under mask constraints.

In this paper, we combine both approaches: spectral and
spatial resource allocation. We study the coexistence of a set
of primary users who operate on separate resource blocks and
a set of secondary users who want to share the resources with
the primaries. The exclusive assignment of resource blocks to
primary links allows for spatial opportunities [10]. Therefore,
we propose that the secondary links first request resources
from the set of primary links and the primary links accept or
reject based on their preferences. This corresponds to a chan-
nel aware two-sided one-to-many matching market. After the
matching of secondary users to several primary users, the dis-
tributed precoding is performed based on a simple and effi-
cient exchange market model where the goods are the inter-
ference temperature, and the equilibrium demand and prices
are achieved when the market clears. Note that the joint op-
timization of assignments and spatial pre-coding is complex.
Therefore, we deconstruct the process into two phases.

The differences to the recent results is that [4] and [5] con-
sider single antenna links and [9] has a common utility func-
tion, the throughput, for all secondary links. In our proposed
scheme, each agent (primary or secondary) has its own pref-
erence relation and utility function.

The envisaged cognitive radio scenario requires an ex-
change of information between the primary and secondary
users (overlay cognitive radio). In order to motivate the pri-
mary users (PUs) to voluntarily offer parts of their spatial
opportunities, the proposed scheme has the following three
properties: 1) Secondary users (SUs) who are assigned to
spatially share the spectrum with a primary link will pay a
compensation fee. 2) In the negotiation process, the PUs can
accept or reject SUs based on the corresponding compensa-
tion fees. Therefore, the PUs participate voluntarily in the
complex market calculation. 3) We guarantee that the respon-
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sibility for the shared spectrum is uniquely determined by as-
signed at most one SU to each PU.

Notions: tr(·), λi(·), rank(·), (·)† denote the trace, the i-th
largest eigenvalue, the rank, and the Moore-Penrose pseudo-
inverse of a matrix, respectively.

2. SYSTEM MODEL AND ASSUMPTIONS

We consider a set K of K primary MIMO links that oper-
ate on K different exclusive resources, e.g., K different fre-
quency blocks. The K primary MIMO links do not interfere
with each other. The K links leave spatial opportunities [10]
for secondary links. Therefore, we consider another set N of
N secondary MIMO links which try to utilize the resources
of the K primary MIMO links. For the CR design, we make
the following assumptions: 1) Each PU allows up to one SU
to use its resource. This assumption is motivated by the re-
quirement of the PUs to have full control over their resources
and to see a clear responsibility of one SU. 2) Each SU can
have multiple resources from different PUs. This assumption
is justified by software-defined radio (SDR) capabilities of the
cognitive SU terminals. They support the flexible allocation
and aggregation of different resources.

We denote the channels for the PU link k ∈ K by Hk.
Denote the channel from PU transmitter k ∈ K to SU re-
ceiver n ∈ N asGk,n and from SU transmitter n ∈ N to PU
receiver k ∈ K as Hn,k. Finally, the channel for the n-th SU
on resource of PU k is denoted by H̃n,k. The precoding ma-
trices (transmit covariance matrices) of the PU are denoted by
Q1, ...,QK . The precoding matrix for SU k on resource n is
denoted by P n,k. Note that all transmit covariance matrices
are positive semidefiniteQk � 0 and P n,k � 0.

In this paper, we propose an algorithm to solve the fol-
lowing two resource allocation problems:

1. Match the SUs to the PU resources: compute an ef-
ficient one-to-many matching. We denote the match-
ing by µ, i.e., for resource k we have the matched SU
µ(k) = n ∈ N or if the resource is unmatched µ(k) =
∅ . For SU n we have the matched set of PUs µ(n) =
{n1, ..., nk} ⊆ K or if SU n is unmatched µ(n) = ∅.

2. Optimize the precoding strategies of the SU over their
matched resources such that all quality of service con-
straints at the PUs are satisfied.

For the physical layer communications, we let all links
operate at their achievable rate limit and use the achievable
rate as the performance measure. The achievable rate of the
PU k with matched SUs n = µ(k) is given by

Rk = log
∣∣∣I +HkQkH

H
k

[
σ2I +Hn,kP n,kH

H
n,k

]−1 ∣∣∣ (1)

where σ2 denotes the noise power at receiver. Based on the
lower bound on the achievable rate in [11, Theorem 1], we

use the following lower bound to formulate the interference
temperature constraint:

Rk ≥ log

(
1 +

tr(HkQkH
H
k )

nRσ2 + tr(Hn,kP n,kH
H
n,k)

)
, (2)

where nR denotes the number of antennas at PU receiver. In
order to satisfy a PU QoS constraint Rk ≥ ρk, it is sufficient
for the SU interference temperature tr(Hn,kP n,kH

H
n,k) to

satisfy

tr(Hn,kP n,kH
H
n,k) ≤ tr(HkQkH

H
k )

2ρk − 1
− nRσ2. (3)

The interference temperature constraint in (3) corresponds
well to the peak interference power constraint (PIPC) in [12].

3. DISTRIBUTED RESOURCE ALLOCATION

The distributed resource allocation is performed in two steps.
First, the matching of PU resources to SUs is computed. It is
solved based on a matching market with a modified version
of the SU proposing deferred acceptance algorithm. Second,
each SU optimizes its precoding matrices over all matched
PU resources. This problem is solved by an exchange market
via clever pricing.

3.1. Matching of SU to PU

The CR scenario described above resembles a one-to-many
matching market [13]. The SUs are matched to undivisible
resources (PUs). Each side of the two-sided market has pref-
erences over the elements of the other side.

The preferences of the SU n depends on both its own
channel H̃n,k and its leakage channel Hn,k. The preference
is based on a function like

φ(H̃n,k,Hn,k) =

{
tr(H̃n,kH̃

H

n,k(Hn,kH
H
n,k)†)or

λ1(H̃n,kH̃
H

n,k(Hn,kH
H
n,k)†)

. (4)

If φ(H̃n,k,H
H
n,k) < θ, then resource k will not be matched

to SU n because the channel quality on resource k for SU n
is too low. The threshold θ can be determined on the QoS
requirements of the SU n.

The preferences of the PU k depend on the interference
channelsHn,k. Corresponding to (4), the preference function
φ(Hn,k) will be set as tr(Hn,kH

H
n,k) or λ1(Hn,kH

H
n,k). If

φ(Hn,k) < ψ, then the PU k will not be matched to SU n be-
cause the interference is so weak that the following exchange
market is more likely to become a buyer’s market.

Each resource k ∈ K has a preference relation>k over the
set of SU and being unused ∅. A SU n ∈ N is acceptable to
resource k ∈ K if n >k ∅. We collect the set of preference re-
lations of the PU in PK = {>k}k∈K. Analogously the pref-
erence relations of the SU is denoted by �N= {�n}n∈N 1.

1For more details on the notation, the interested reader is referred to [13].
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For the distributed implementation, it is very important to
have stable matching between SUs and PUs because other-
wise one pair of SU and PU could ruin the matching. For our
scenario, we need the simplified definition of a matching2.

Definition 1. A matching µ is a function from the set N ∪ K
into the set of unordered families of elements of N ∪ K such
that:

1. |µ(k)| = 1 for every resource k ∈ K and µ(k) = ∅ if
µ(k) /∈ N ;

2. µ(k) = n if and only if k ∈ µ(n).

The following definitions on stability of a matching µ can
be found in [13]. The matching µ is blocked by resource k
and SU n if resource k strictly prefers n to µ(k) and n is ac-
ceptable to k. A matching is individually rational if for each
resource k ∈ K it holds µ(k) >k ∅ and for each SU k ∈ K
it holds k �n ∅ for every k ∈ µ(n). A matching is stable if
it is individually rational and not blocked. A resource alloca-
tion mechanism is a systematic way of assigning resources to
users.

One well known method to find a stable matching is the
Gale Shapley algorithm [15]. Here, we apply a simplified
non-iterative version:

1. First, each SU n informs the PU resources k on their
preference list k �n ∅ about their requests.

2. Second, each PU k accepts the best offer from all re-
questsRk and reject all the others:

µ(k) = arg max
n∈Rk

φ(Hn,k). (5)

After the two steps, a stable matching µ is computed.

3.2. Exchange Market and Pricing

Based on the stable matching µ, the precoding of the SU is
determined such that the QoS of the PU is fulfilled. In or-
der to have a distributed implementation, we model the situ-
ation as an exchange market [16]. It is sufficient to consider
one SU n and describe its interaction with the Kn matched
PU resources in µ(n). In order to simplify the following
derivations, we omit the index n and denote Gk = Hn,k

and F k = Gk,n, and H̃n,k = H̃k.
In the exchange market between the ”consumer” SU and

the ”producer” PU, we define the demand from SU n for the
”goods” at PU k

dk = tr
(
GkP kG

H
k

)
(6)

with a price πk ≥ 0. Furthermore, we assume that SU n has
a budget of bn.

2For the definition including a quota please refer to [14].

The corresponding utility maximization problem (UMP)
for the SU n is given by

max
P k�0

K∑
k=1

log
∣∣∣I + H̃kP kH̃

H

k

[
σ2I + F kQkF

H
k

]−1 ∣∣∣
s.t.

∑
k

πktr
(
GkP kG

H
k

)
≤ bn. (7)

For fixed transmit covariance matrices of the PUQ1, ...,QK ,
the programming problem in (7) is convex given π. Denote
the global optimum with P ∗1, ...,P

∗
K .

The PU k needs to determine the price πk for its resource,
such that the interference temperature constraint in (3) is sat-
isfied. In other words, the price πk should be chosen to clear
the market, i.e.,

tr
(
GkP

∗
kG

H
k

)
=

tr(HkQkH
H
k )

2ρk − 1
− nRσ2. (8)

The difference between the demand on the left of (8), i.e., dk,
and the supply on the right of (8), i.e., sk, is called the excess
demand function which depends on the price vector π

ek(π) = dk(π)− sk

= tr
(
GkP

∗
kG

H
k

)
− tr(HkQkH

H
k )

2ρk − 1
+ nRσ

2. (9)

The market-clearing equilibrium in (8) is also called Wal-
ras equilibrium (for a definition please refer to [16]). For the
scenario at hand, it always exists. The existence of a Wal-
rasian equilibrium depends on the properties of the aggregate
excess demand function in (9). If the aggregate excess de-
mand satisfies the weak gross substitute property [17, Defi-
nition 17.F.2], then there exists a Walrasian equilibrium [17,
Proposition 17.F.3].

Definition 2. The aggregate excess demand function e(π)
has the weak gross substitute property if whenever the price
of one good i is increased from πi to π′i, and the prices of
the other goods stay the same, then the demand of the other
goods non-decreases, i.e.,

ej([π1, . . . , πi−1, π
′
i, πi+1, . . . , πK ]) ≥ ej(π) for j 6= i.

(10)

The useful property of the UMP and the corresponding
excess demand function in (9) is provided in the following.

Proposition 1. The demand function computed by the UMP
in (7) fulfils the weak gross substitute property in (10).

The proof is based on the analysis of the demand func-
tion. Since the demand function depends on the water-level
for some modified waterfilling (including the prices of the dif-
ferent PU resources), the impact of changing one price on this
water-level and the corresponding change in demand for all
other PU resources is computed.
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3.3. Algorithms

3.3.1. Distributed Algorithm

Based on the gross substitute property, we develop the fol-
lowing distributed price update algorithm which achieves the
equilibrium in (8). A discrete version of a tâtonnement pro-
cess is provided in [18] with the following price update rule:

π
(t+1)
i =

[
π
(t)
i + aiei(π

(t))
]
0
, i ∈ K, (11)

where ai > 0 is a parameter which influences the rate of up-
date of price i. It is proven in [18] that the process in (11) is
globally convergent if the aggregate excess demand satisfies
the gross substitute property. Since our aggregate excess de-
mand function satisfies the weak gross substitute property, we
cannot claim global convergence.

3.3.2. Centralized Algorithm

Given the stable matching µ, we consider the j-th SU is
matched to a set of PUs µ(j) where µ(j) 6= ∅. Based on the
characterization of market-clearing equilibrium, i.e., both the
SUs’ budgets and PUs’ supplies clear, we have

(G) d∗k,m =
ρ∗j
π∗k
− 1

λm(Ak)
, (12)∑

k

∑
m

π∗kd
∗
k,m = bj , (13)∑

m

d∗k,m = sk, (14)

∀k ∈ µ(j), ∀m ∈ {1, ..., rank(Ψ∗k)},

where (12) is from the optimal water-filling solution to the
UMP (the details is omitted due to the limited space). In (12),
d∗k,m is the optimal demand allocated by the optimal water-
level ρ∗j to λm(Ak) with

Ak = (GH
k Gk)

−1/2H̃
H
k

[
I + F kQkF

H
k

]−1
H̃k(G

H
k Gk)

−1/2,
and Ψ∗k = GkP

∗
kG

H
k . (13) and (14) denote the budget-

clearing and supply-clearing conditions, respectively. These∑
k rank(Ψ∗k) + |µ(j)| + 1 equations form a equation

group G with
∑
k rank(Ψ∗k) + |µ(j)| + 1 variables, i.e.,

{dk,m, πk, ρj}. Therefore, achieving the market-clearing
equilibrium is equivalent to solving this equation group G.

Substituting (12) into (13) and (14) yields a group of
|µ(j)|+ 1 equations G′ with |µ(j)|+ 1 variables {πk, ρj}:

(G′) ρ∗j
∑
k

rank(Ψ∗k)−
∑
k

π∗k
∑
m

1

λm(Ak)
= bj

ρ∗j
π∗k

rank(Ψ∗k)−
∑
m

1

λm(Ak)
= sk

∀k ∈ µ(j), ∀m ∈ {1, ..., rank(Ψ∗k)}.

For notational simplicity, we use {1, ..., |µ(j)|} to represent
the indexes of the PUs in µ(j), i.e., {µ(j)[1], ..., µ(j)[|µ(j)|]}.
Given {rank(Ψ∗k)} (i.e., the optimal data streams), the opti-
mal solution to the linear equations group (G′) can be solved
in closed-form by (15).

Thus, we need to determine {rank(Ψ∗k)} in (15). Due
to rank(Ψ∗k) ∈ [1, rank(Ak)], there exist Πk∈µ(j)rank(Ak)
possibilities of {rank(Ψk)}. Then, {rank(Ψ∗k)} can be de-
termined by checking which possibility makes all {d∗k,m}
positive. If there exists a unique {rank(Ψ∗k)}, the equilib-
rium is unique. Otherwise, the best optimal solution {ρ?j , π?k}
in (15) among the multiple equilibria can be further selected
by

{ρ?j , π?k} = arg max
i
U iSj ,∀i ∈ {1, ...,Πk∈µ(j)rank(Ak)} (16)

to maximize SU j’s utility USj (i.e., rate) or by

{ρ?j , π?k} = arg max
i
U iPk ,∀i ∈ {1, ...,Πk∈µ(j)rank(Ak)} (17)

to maximize PU k’s utility UPk (i.e., revenue), respectively.

4. NUMERICAL ASSESSMENT

In this section, we evaluate the performance of the central-
ized algorithm by considering a coexisting CR network (in
Fig. 1) of 6 PUs and 3 SUs, and 3 antennas per node. We
set the PU or SU transmit power budget is 1 Watt and SNR
= 10dB. The channel from a PU/SU transmitter to a PU/SU
receiver is assumed as Rayleigh fading channel with a path
loss exponent α = 2. Set θ = 1 for each SU and ψ =
0.7 ∗maxn {φ(Hn,k)} for each PU.

As shown in (4), the stable matching depends on the chan-
nel gains. Here, we consider a set of channels resulting in a
stable matching as

M =

1 1 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0




ρ∗j
π∗1
...

π∗|µ(j)|

 =


∑
k rank(Ψ∗k), −

∑
m

1
λm(A1)

, ..., −
∑
m

1
λm(A|µ(j)|)

rank(Ψ∗1), −
(
s1 +

∑
m

1
λm(A1)

)
, 01×(|µ(j)|−2)

...

rank(Ψ∗|µ(j)|), 01×(|µ(j)|−2), −
(
s|µ(j)| +

∑
m

1
λm(A|µ(j)|)

)

−1

bj
0
...
0

 (15)
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Fig. 1. Example 6 PUs and 3 SUs MIMO CR networks.

where [M ]n,k = 1 ([M ]n,k = 0) denotes the PUk is (not)
matched to SUn. In M , the SU matching shows µ(1) =
{1, 2}, µ(2) = {4, 5} and µ(3) = {3}. It means that the PU6

is not assigned.
According to (15), we can compute the optimal water-

levels and prices of {SU1, µ(1)}, {SU2, µ(2)} and {SU3, µ(3)},
separately. Simulation results of the centralized method show
there exists a unique market-clearing equilibrium:

Equilibrium SU Power (Watt) Price
SU1 − PU1 [0.1286,0,0] 6.9865
SU1 − PU2 [0.1286,0,0] 0.7912
SU2 − PU4 [0.1286,0,0] 7.5306
SU2 − PU5 [0.1286,0,0] 0.2472
SU3 − PU6 [0.0429,0.0429,0.0429] 7.7778

.

5. CONCLUSIONS

The paper studies a novel ”interference trading” problem for
a multi-PU multi-SU MIMO CR network. We propose a two-
stage approach which includes a matching market between
PU resources and SUs and an exchange market with interfer-
ence temperature as goods. We show that the demand func-
tion for the exchange market fulfils the weak gross substitute
property. A centralized method is provided to compute the
optimal solutions at the equilibrium in closed-form.

The extension to a many-to-many matchings and joint as-
signment and precoding optimization is our current ongoing
work.
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