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Dept. E.E./ESAT, SCD-SISTA, KU Leuven / iMinds-KU Leuven Future Health Department
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

ABSTRACT

This paper presents an embedded-optimization-based algo-
rithm for loudspeaker compensation using a generic Ham-
merstein loudspeaker model, i.e. a cascade of a memoryless
nonlinearity and a linear �nite impulse response �lter. An op-
timization procedure is embedded into the algorithm to carry
out the loudspeaker compensation on a frame-by-frame basis.
In order to minimize the perceptible distortion incurred in the
loudspeaker, a perceptually meaningful optimization criterion
is constructed by using a psychoacoustic model. The result-
ing per-frame optimization problems are solved ef�ciently us-
ing a gradient optimization method. Objective evaluation ex-
periments show that the proposed loudspeaker compensation
algorithm provides a signi�cant audio quality improvement,
and this for all considered amplitude levels.

Index Terms— Loudspeaker compensation, audio qual-
ity, Hammerstein model, embedded optimization.

1. INTRODUCTION

Loudspeakers have a non-ideal response and consequently in-
troduce linear as well as nonlinear distortions in the repro-
duced audio signal. These distortions in most cases result in
a degradation of the perceived audio quality. Nonlinear dis-
tortion is a notably prominent problem in small and low-cost
loudspeakers, which are ubiquitous in mobile devices, espe-
cially so at high playback levels [1].
Loudspeaker compensation techniques aim at reducing

the effects caused by the non-ideal loudspeaker response.
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The idea is to apply a digital compensation operation in cas-
cade with the audio reproduction channel to counteract the
response errors and nonlinearities introduced by the loud-
speaker. Traditionally, loudspeakers have been modeled by
linear systems such as FIR �lters, IIR �lters, warped �lters
or Kautz �lters. The aim of linear loudspeaker compensa-
tion techniques is then to identify/approximate and apply
the inverse digital �lter to the audio signal prior to playback
[2]. Nonlinear behaviour can be taken into account by using
nonlinear loudspeaker models such as Hammerstein models,
Wiener-Hammerstein models and Volterra models. The aim
of nonlinear loudspeaker compensation techniques is then to
invert the nonlinear system under consideration [3].
This paper presents an embedded-optimization-based al-

gorithm for performing loudspeaker compensation using a
generic Hammerstein loudspeaker model. An optimization
procedure is embedded into the algorithm to carry out the
loudspeaker compensation on a frame-by-frame basis. In
order to minimize the perceptible distortion incurred in the
loudspeaker, a psychoacoustic model is incorporated which
captures knowledge about the human perception of sound.
The proposed algorithm extends the compensation method in
[4], which focuses solely on compensating a Hammerstein
model containing a hard clipping nonlinearity. The proposed
algorithm enables to compensate a generic Hammerstein
model, i.e. a cascade of any memoryless nonlinearity and a
linear �nite impulse response �lter.
The paper is organized as follows. In Section 2, the

embedded-optimization-based loudspeaker compensation
method is presented and the incorporation of a psychoacous-
tic model is discussed. In Section 3, a gradient optimization
method for solving the per-frame optimization problems is
described. In Section 4, the results from objective evaluation
experiments are discussed. In Section 5, some concluding
remarks are presented.

2. HAMMERSTEIN MODEL COMPENSATION

2.1. Hammerstein model description

The loudspeaker is modeled by a Hammerstein model, i.e. a
cascade of a memoryless nonlinearity and a linear �nite im-
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pulse response (FIR) �lter. The FIR �lter has an impulse re-
sponse h[n], n = 0...L − 1. The memoryless nonlinearity
g(x) is represented as a linear combination of P basis func-
tions,

g(x) =

P∑
p=1

cpψp(x) = cTψ(x) (1)

where the basis functions are stacked in a vector ψ(x) =
[ψ1(x), ..., ψP (x)]

T and the corresponding coef�cients are
stacked in a vector c = [c1, ..., cP ]

T .
A frame-by-frame processing of the digital input audio

signal x[n] will be applied, employing input frames xm =
[xm,1, ..., xm,N ]T ∈ R

N ,m = 0, 1...M , with N ≥ L − 1.
The output g(xm) of the memoryless nonlinearity for a given
input frame xm is straightforwardly constructed using the re-
lation (1),

g(xm) = [g(xm,1), ..., g(xm,N )]T

= Ψ(xm)c (2)

where the basis function vectors for the different samples are
assembled in a matrixΨ(xm) = [ψ(xm,1), ...,ψ(xm,N )]T .
The output frame ym of the Hammerstein model can then

be written as

ym = Hmg(xm) + H̃mg(xm−1) (3)

where the matrices Hm ∈ R
N×N and H̃m ∈ R

N×N im-
plement a convolution operation with the FIR �lter h[n] as
follows

Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[0] 0 . . . . . . . . . . . . 0
h[1] h[0] 0 . . . . . . . . . 0
...

. . .
. . .

. . .
...

h[L− 1]
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 h[L− 1] . . . h[1] h[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

H̃m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 h[L− 1] . . . h[2] h[1]
0 . . . 0 0 h[L− 1] . . . h[2]
...

. . .
. . .

...
...

. . . h[L− 1]
... 0
...

...
0 0 . . . . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

2.2. Embedded-optimization-based compensation

Figure 1 shows the operation of the proposed Hammerstein
loudspeaker model compensation technique. Before it is fed
into the loudspeaker, the input frame xm passes through the
loudspeaker compensation block. For a given frame xm, the
loudspeaker compensation consists of the following steps:
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Fig. 1. Embedded-optimization-based Hammerstein loud-
speaker model compensation: schematic overview

1. Calculate the global masking threshold tm ∈ R
N

2
+1 of

the input frame xm using a psychoacoustic model (see
Subsection 2.3).

2. Calculate a compensated input frame v∗

m ∈ R
N as the

solution of an optimization problem, such that the cor-
responding output frame y∗

m is perceptually as close as
possible to xm.

The compensated input frame v∗

m is calculated from the
knowledge of the input frame xm and its masking threshold
tm. The objective function re�ects the amount of perceptible
distortion added between ym and xm,

v∗

m = argmin
vm∈RN

1

2N

N−1∑
i=0

wm(i)|Ym(ejωi)−Xm(ejωi)|2

(6)

where ωi = (2πi)/N represents the discrete frequency vari-
able, Xm(ejωi) and Ym(ejωi) are the discrete frequency
components of xm and ym respectively, and wm(i) are the
weights of a perceptual weighting function to be de�ned in
subsection 2.3.
Using the Hammerstein model input-output relation (3),

optimization problem (6) can conveniently be rewritten as

v
∗

m = argmin
vm∈RN

1

2
(ym − xm)T D

T
WmD︸ ︷︷ ︸
�Qm

(ym − xm)

= argmin
vm∈RN

1

2
(Hmg(vm) + H̃mg(v∗

m−1)− xm)T Qm

(Hmg(vm) + H̃mg(v∗

m−1)− xm)

= argmin
vm∈RN

1

2
g(vm)T H

T
mQmHm g(vm)

+ (HT
mQ

T
m(H̃mg(v∗

m−1)− xm))T g(vm)
(7)

where D ∈ C
N×N is the unitary Discrete Fourier Transform

(DFT) matrix,Wm ∈ R
N×N is a diagonal weighting matrix

with positive diagonal elements wm(i), obeing the symmetry
property wm(i) = wm(N − i) for i = 1, 2, ..., N2 − 11.

1Note that the optimization problem is quadratic in the nonlinearly trans-
formed optimization variable g(vm) ∈ RN . Also, the optimization problem
is not convex, so the global optimality of the solution can not be guaranteed.
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2.3. Perceptual weighting

The rationale behind applying perceptual weights in the sum-
mation (6) is the fact that distortion at certain frequencies is
more perceptible than distortion at other frequencies. Two
phenomena of human auditory perception are responsible for
this. A �rst phenomenon is the absolute threshold of hear-
ing, which is de�ned as the required intensity (dB) of a pure
tone such that an average listener will just hear the tone in
a noiseless environment. The absolute threshold of hearing
is a function of the tone frequency. A second phenomenon
is simultaneous masking, where the presence of certain spec-
tral energy (the masker) masks the simultaneous presence of
weaker spectral energy (the maskee). Combining both phe-
nomena, the global masking threshold gives the amount of
distortion energy (dB) at each frequency that can be masked
by the signal.
Consider the input frame xm to act as the masker, and

ym−xm as the maskee. By selecting the weightswm(i) to be
exponentially decreasing with the value of the global masking
threshold of xm at frequency i, the objective function re�ects
the amount of perceptible distortion introduced,

wm(i) =

{
10−αtm(i) if 0 ≤ i ≤ N

2

10−αtm(N−i) if N
2 < i ≤ N − 1

(8)

where tm is the global masking threshold of xm (in dB), cal-
culated using the MPEG-1 Layer 1 psychoacoustic model [5].

3. OPTIMIZATION ASPECTS

3.1. Regularized optimization problem

To preserve inter-frame continuity, overlapping frames will
be used, where frames overlap with K samples, with K ≤
N−L+1. The input frame vector vm can then be partitioned
as follows,

vm =

⎡
⎣v

F
m

vM
m

vL
m

⎤
⎦ (9)

where vF
m ∈ R

K contains the �rst (overlapping with the pre-
vious frame) samples, vM

m ∈ R
N−2K contains the middle

(non-overlapping) samples, and vL
m ∈ R

K contains the last
(overlapping with the next frame) samples. We can write
down a slightly modi�ed version of optimization problem (7)
accounting for the frame overlap structure,

v
∗

m = argmin
vm∈RN

1

2
g(vm)T H

T
mQmHm︸ ︷︷ ︸
�Am

g(vm)

+ (HT
mQ

T
m(H̃mg

([
v
F,∗
m−1

v
M,∗
m−1

])
− xm)

︸ ︷︷ ︸
�bm

)T g(vm)

(10)

where H̃m is of similar structure as in (5), but now H̃m ∈
R

N×(N−K).

Algorithm 1 Hammerstein loudspeaker model compensation
using gradient optimization method
Input xm ∈ R

N , v∗

m−1 ∈ R
N , h[n] ∈ R

L, c ∈ R
P , ψ(x) ∈

C(R → R
P ),D ∈ C

N×N , α, β, γ, λ, kmax

Output v∗

m ∈ R
N

1: Compute masking threshold tm for xm using [5]
2: Compute weightswm using (8)
3: Qm = DTdiag(wm)D
4: ConstructHm and H̃m using (4)-(5)
5: Initialize v0

m = xm

6: k = 0
7: while k < kmax do
8: Compute∇f(vk

m) using (13)-(15)
9: while f(vk

m − skm∇f(vk
m)) > f(vk

m) − βskm‖∇f(vk
m)‖22

do
10: skm = γskm
11: end while
12: vk+1

m = vk
m − skm∇f(vk

m)
13: k = k + 1
14: end while
15: v∗

m = vk
m

To enforce continuity between the �rst samples vF
m of the

current frame and the last samples vL,∗
m−1 of the previously op-

timized frame, the optimization problem (10) is regularized,
i.e. a regularization term is added in the objective function,
v
∗

m = argmin
vm∈RN

f(vm)

= argmin
vm∈RN

1

2
g(vm)T Am g(vm) + b

T
m g(vm)

+
λ

2
‖vF

m − v
L,∗
m−1‖

2
2 (11)

where λ is a regularization parameter.

3.2. Gradient optimization method

The proposed optimization method for solving optimiza-
tion problem (11) is an iterative gradient method. Introduc-
ing the notation vk

m for the kth iterate of the mth frame, the
(k+1)th iteration of the gradient method consists in taking a
step of stepsize skm along the negative gradient direction,

v
k+1
m = v

k
m − s

k
m∇f(vk

m) (12)

where the gradient∇f(vk
m) is computed as

∇f(vk
m) = diag(∇g(vk

m))

[
HT

mQT
m

(
Hmg(vk

m)

+H̃mg

([
v
F,∗
m−1

v
M,∗
m−1

])
− xm

)]
+ λ

[
vF,k
m − v

L,∗
m−1

0

]

(13)

where the gradient of the memoryless nonlinearity∇g(xm) ∈
R

N is computed as

∇g(xm) = [∇g(xm,1), ...,∇g(xm,N )]T

= ∇Ψ(xm)c (14)
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and where the matrix∇Ψ(xm) ∈ R
N×P is de�ned as

∇Ψ(xm) =

⎡
⎢⎣
∇ψ1(xm,1) . . . ∇ψP (xm,1)

...
. . .

...
∇ψ1(xm,N ) . . . ∇ψP (xm,N )

⎤
⎥⎦ . (15)

The stepsize skm is determined using a backtracking line
search for satisfying the Armijo condition [6]. The resulting
Hammerstein loudspeaker model compensation algorithm,
including the detailed description of the backtracking line
search, is given in Algorithm 1.

4. SIMULATION RESULTS

A Hammerstein loudspeaker model was used with the follow-
ing speci�cations:

• A memoryless nonlinearity with P = 3 basis functions
ψ(x) = [x x3 x5]T and a corresponding coef�cient
vector c = [0.6 0.3 0.4]T .

• An FIR �lter (L = 128) with impulse response
h[n], designed using the frequency sampling method
fir2 in Matlab, having a required magnitude re-
sponse [1 0.95 0.75 0.50 0.20 0]T for the frequencies
[0 0.2 0.4 0.6 0.8 1]T × fNyquist.

A test database consisting of 8 audio excerpts was com-
piled (see Table 1 for details). Each audio signal in the test
database was fed into the Hammerstein loudspeaker model,
once with and once without performing a compensation step.
The following parameters were used in the compensation
step: N = 512, O = 128, α = 0.04, β = 0.1, γ = 0.6,
λ = 10−4 and kmax = 250. These simulations were per-
formed at four different relative average amplitude levels
a = {0.25, 0.50, 0.75, 1.00}.
The objective audio quality improvement for each audio

excerpt was assessed by computing theΔODG measure,

ΔODG = ODG(x,y∗)− ODG(x,y) (16)

where x is the input signal, y is the uncompensated output
signal, y∗ is the compensated output signal, and ODG(r,d)
is an objective measure [7] which predicts the audio quality
of a signal d with respect to a signal r on a scale of [0,−4],
where 0 corresponds to an imperceptible degradation, and -4
corresponds to a very annoying degradation.
In Figure 2, the ΔODG scores are shown. We observe a

positive audio quality improvement for all audio excerpts, and
this for all considered relative average amplitude levels. For
most audio excerpts, increasing audio quality improvement
scores are observed for increasing amplitude levels. This is
to be expected, as it is exactly at higher amplitude levels that
the Hammerstein nonlinearity is severely affecting the audio
signal, and that compensating for it is considerably improving
the resulting audio quality.

In Figure 3, the ΔODG scores for all audio excerpts at
relative average amplitude level a = 0.50 are shown, for dif-
ferent maximum iteration numbers kmax = {50, 100, 250}.
We observe that increasing the maximum iteration number re-
sults in an increased audio quality improvement. On average,
86 percent of the total audio quality improvement (after 250
iterations) is achieved after only 100 iterations. Likewise, an
average of 72 percent of the total audio quality improvement
is achieved after only 50 iterations.

5. CONCLUSION

In this paper, an embedded-optimization-based algorithm
for loudspeaker compensation using a generic Hammerstein
loudspeaker model was presented. By incorporating a psy-
choacoustic model, a percepually meaningful optimization
criterion was constructed. In order to ef�ciently solve the per-
frame optimization problems, a gradient optimization method
was proposed. From objective evaluation experiments, it was
shown that the proposed loudspeaker compensation algorithm
results in a signi�cant audio quality improvement, and this
for all considered amplitude levels.
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Table 1. Audio excerpts database used for comparative audio quality evaluation (16 bit mono at 44.1 kHz)
Nr. Name Texture Composition Style Duration [s] Samplestart Sampleend Origin
1 poulenc.wav polyphonic instrumental classical 17.8 400000 1183000 [8]
2 rhcp.wav polyphonic instrumental rock 9.8 468996 900000 [9]
3 pierle.wav polyphonic instrumental+vocal pop 11.7 2234000 2750000 [10]
4 chopin.wav monophonic instrumental classical 17.8 50000 836200 [11]
5 kraftw.wav polyphonic instrumental electronic 17.2 7480000 8240000 [12]
6 breftri.wav monophonic instrumental classical 19.7 1 869675 [7]
7 crefsax.wav monophonic instrumental classical 10.9 1 479026 [7]
8 grefcla.wav monophonic instrumental classical 6.9 1 302534 [7]

Poulenc RHCP Pierle Chopin Kraftw Breftri Crefsax Grefcla
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a = 0.25
a = 0.50
a = 0.75
a = 1.00

Fig. 2. Audio quality improvement scores for different audio excerpts, at relative average amplitude levels a =
{0.25, 0.50, 0.75, 1.00}.
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Fig. 3. Audio quality improvement scores for different audio excerpts at relative average amplitude level a = 0.50, for different
maximum iteration numbers kmax = {50, 100, 250}.
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