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Abstract

The deconvolution problem in image processing consists of
reconstructing an original image from an observed and thus a
degraded one. This degradation is often modelled as a linear
operator plus an additive noise. The linear operator is called
the blurring operator and the goal consists of deblurring the
image. Very often, the blurring operator is modelled as a
convolution whose kernel (the Point Spread Function) is not
directly known in practice. In this paper, we first propose a
new model for convolution which then validate through com-
puter simulations. Basically, we expend the kernel leading
to a sequence of real coefficients connected with the moment
problem. We particularly emphasize the radial isotropic case.

Index Terms— Image restoration, Image deblurring, Blind

deblurring, Blind deconvolution, The moment problem.

1. INTRODUCTION

Image deblurring is one of the most discussed problems in
image processing since it plays a prominent role in several
applied sciences ([1, 2]). This is a difficult problem which
is often encountered in practical applications such as artis-
tic restoration, medical imaging, astronomical imagery, seis-
mology and some current-life applications including decod-
ing bar codes, reading texts using a camera phone (see, e. g.,
[3, 4, 5]). This problem consists in recovering an original u
from a degraded one ug, by dropping the effects of blur and
noise. The connection between u and v is often modelled by
the equation

ug = Ku +n.

in which K represents a blur operator, n an additive noise and
ug is the observed image. In the most common model, K is
considered in the form

Ku=Fkxu, @)
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where the function £ is called the Point Spread Function
(PSF) and * denotes the convolution. There exists an abun-
dant literature on the subject, especially concerning non blind
deconvolution, that is retrieving the original image v from
ug when the blur K is known (as for example in denoising
problems for which K = I). A usual approach in non blind
deconvolution consists in solving the minimization problem

min/ |Ku—uo|2dx+/ 0(|Vul)dz, (2)
u Q Q

where 6 denotes a suitable function chosen such that interior
edges are preserved (see, e. g., [6, 7]) and € the spatial do-
main of the image. In blind deconvolution problems, both the
original image and the blur are unknown and must be recov-
ered from ug.

Supposing that the blur K is described by a parameter
r, the following variational model is often used for getting a
conjoint estimation of the blur kernel and the shape image

min E(r, u) — / K (ryu—uo|2dz-+ Ay (w)+pda (k) (3)
Q

U

where J; and J are two penalization terms (see [8]). For
example, in the case of a radial symmetric out-of-focus blur,
the operator K is of the form Ku = k = u with k given by

1

k(x) = W

Ip,(z), “4)

where B, = {z € R? | |z| < r} and Vj; is the volume of the
unit ball given by
27Td/2

Y= arapy

where I is the well-known gamma function.

This problem becomes much more difficult when no in-
formation on the nature of the PSF k is available. In [9], we
propose the first idea, the mathematical framework and some
theoretical aspects for a new manner to write the blur operator
K which replaces the convolution (1).



This form consists in writing Ku as a sum which approx-
imates the convolution k x u:

_ 1)l
Ku= Z (=1) 0,0%u. (&)

|
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Our purpose here is to present some practical issues and our
numerical results. Of course in practice, the sum in 5 is trun-
cated and the parameter r describing K can be considered as
the sequence of the coefficients (o). appearing in the sum
(5). These coefficients are linked to the moments of k and
could be explicitly computed when k is known.

In blind deconvolution problems, the parameter r is of-
ten unknown and must be computed by solving an inverse
problem such as (3). Thus, setting the correct constraints
on this parameter is of crucial importance. We shall see that
this question is intimately linked to the moment problem (see
[10, 11, 12] for more details). The truncature of the sums
(5) and the recover of the PSF & from the coefficients (04,)q
are also important questions which will be treated in this pa-
per. The paper is organized as follows : section 2 defines the
proposed model and how it approaches the blind deblurring
problem. After an introduction of the moment problem, we
show how to determine the PSF from the moments. In sec-
tion 3, we give a practical way to use the sum (6). Finally,
some numerical results illustrate this work in Section 4.

2. THE MODEL

We start this section by giving a summarized presentation of
the model. In its general version, the model proposed here
can be expressed as follows:

e The blur operator K is parametrized by a sequence
of positive real numbers (04),ene and writes into the
form 5.

e The sequence (0, )qend 18 subject to the following ab-
stract constraint

There exists a positive function k on R¢ such that

Va € Nd,/ 2k(z)dr = 04.
R4

(6)

Condition (6) means that the coefficients (o), are the mo-
ments of a non negative function k£ on R?. From a practical
viewpoint this condition is not tractable in this form and must
be made more explicit. We shall see that this question is inti-
mately linked to the well known moment problem.

If in addition, we suppose that the blur is radial symmetric (i.

e. k(xz) = k(]z|)), then the approximation (5) becomes
I'(d/2) k
Ku = ;A 7
U= e 4 A @

where A is the Laplace operator. Notice that in practice, the
Laplacian A is considered in its discrete form. As we shall
show in section 3, from the discrete viewpoint approxima-
tions, (5) and 7 converge for any image u = (u,;), pro-
vided that some soft conditions are satisfied by the coeffi-
cients (04 )a:

There exists a bounded function p, non negative on R,
such that

+oo
oo =1, o) = / t*p(t)dt, for k > 0. (8)
0

This condition can be seen as a one dimensional moment
problem on the half-line; it is called the Stieljes problem. No-
tice that the functions p and k are linked by the identity

2
k(z) = A—dlxlz‘dmm?), )

where A is the surface area of the unit sphere given by

9 d/2
Ag= 1
I'(d/2)
More, we can suppose that the function k has a compact sup-
port, that is
k(xz) = 0 forall |z| > r,

where the parameter r is the radius of the support of k. Setting
0 = /r, we can write

o 5’“0,:, (10)

where (0} )r>0 is a sequence of real numbers satisfying the
constraint:
there exists a function p*, nonnegative on [0, 1, such that

1
o5 =1, o} :/ tkp*(t)dt, for k > 0. (11)
0

Now, we can see that the connection between the model (5)
and the convolutive model (7) is evident. The sum (5) approx-
imates formally the convolution k& x u, with k solution of (6),
that is

—1)lel
kxu= Z( ) 0,0%Uu.

|
aeNd o

For example, in the case of a radial out-of-focus blur, the PSF
k is given by (4) and one has

d _ d
p(t) = QTdtd/Z Mlo,2)(t), ok = P ri% for k > 0.
(12)
In the case of a gaussian blur, one has
—|a]?

k(x) = (13)

(2m)d/25d exp( 202 )



1 P\ 4/2-1 ;
p(t) = o (d/2)0d (2) eXP(—?)» (14)

and
(202)*T(k + d/2)
I'(d/2)

In practical problems, we can use expressions (5) or (7) in
non blind deconvolution problem, after computing the coeffi-
cients (04 )aenm Or (0% )gen- Indeed, in blind deconvolution
problems, the sequence (o) is unknown or partially known
(as for the out-of-focus blur) and must be estimated simulta-
neously with the original image. In other terms, the parameter
r can be considered as the sequence (o). In the case of a
centro-symmetric and compactly supported PSF, r can be
considered as the pair (9, (6 )ken). In the simplest case of
a radial symmetric out-of-focus blur of the form (4) (resp. a
gaussian blur of the form (13)) r is nothing but the unknown
radius r (resp. the standard deviation of the gaussian blur o).

for k£ > 0.

O —

3. CONVERGENCE OF THE EXPANSION AND
TRUNCATURE

In this section, we focus our attention on the truncature of
expansion (7). By sake of simplicity, we treat only the case
of a radial symmetric blur given by the sum (7). Notice that
in practice this sum is truncated. Hence, the operator K is
replaced by a finite sum

N
I'(5) k
Kyu = 70‘;9A u, (15)
,;)z%r(k + k!
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for some integer N > 1. Two questions pop up in this case;
at what order should we truncate this sum? (b) what are the
constraints on the truncated sequence (oy)r>0?-

The purpose of the following section is to give an answer to
these questions.

In the discrete form, an image is composed of a set of pix-
elsindexedby(ij) 1< i < N, 1 <j < M u=

e R

space Xis equlpped with the euchdlan inner scalar product

Yu,v € X, ( qu—ZZu”v”

i=1 j=1

By a minor abuse of the notation, we state for X", where
m > 1, the space (R™)V*M The gradient of u € X, written
Vu belongs to X2 and could be defined by several manners.
One of them consists to set Vu = (g1, g(?)) with:

(1 Ui41,5 — U4 5 if1 < N,
9ii =\ o ifi = N.
) Ui i1 — Uiy if 7 <M,
9i5 = { 0 if j =M. (16)

The div operator is defined in X2 to X as the adjoint operator
of —V. So, for all p = (p™"), p(?)) € X2, we have:

Vz € X, (divp, z) = —(p, Vz).
We state for all u € X,
Au = div(Vu). (17)

Then, from the definition of the divergence, we have:

Yu,v € X, (Au,v) = —(Vu, Vv) = (u, Av). (18)
We set ||A |
v
1Al =
o Jloll

We start with the following lemma

Lemma 1 Suppose that p satisfies the following assumption:
there exist four constants o > 0, 3> 1/2, A\ > 0and C > 0
such that

Yt € Ry, p(t) < Ct* exp(—t?), (19)

Then, the sequence (15) converges normally. Moreover, this
normal convergence holds also when 3 = 1/2 and \*> >

IA]-

Condition (19) is satisfied by a Gaussian blur or an out-of-
focus blur of the form (4 or 13). It is also satisfied by any
compactly supported kernel.

remark 1 With definition (16) of the gradient and divergence
operator, one can prove that

11
+ 27 <Az <8

4
8- (N M

Lemma 2 Suppose that d = 2. Let (0})r>0 be a real se-
quence satisfying the condition

0<o, <MrF, (20)

where T > 0 and M > 0 are two real constants. Then, the fi-
nite sum (15) converges normally for each u € X. Moreover,

LMy 2(N +1)(In0x + Oy + 1)

Ku—K <
1w = Kyl < 27(N + 1)

[[ull;

and My = sup akr_k < M.
E>N+1

where HN = m

Proposition 1 Ifwe suppose (20) and N + 1 > l, where A

is the unique real satisfying log A + A+ 1 =0 (X = 0.2785),
then 4
I'(5) M

Ku— Kyull <
1w = Kyul| < == N+1




4. NUMERICAL RESULTS

To fix the ideas, on the following tests, we blur an “ideal”
image u with an out-of-focus blurring operator k£ and with
the new operator defined in (15). Thus, the data (namely the
blurry images that we would like to restore) are:

o uyg=kxu,
o uy = Kyu defined in (15) for a given integer V.

Figure 1 compares the evolution citeria with respect to the
radius r, between the convolutive model and the proposed one
with respect to the criterion (2) with u known. This test shows
that the graphs globally coincide and in a neighborhood of the
optimum, they are overlaid.

%10

new model
classic modlel

ideal radius

¥ radius

(a) Test withug = kxuwandr =7

new model
classic model

107

ideal radius

1 radius

(b) Test with up = Kyu ;N=30andr =7

Fig. 1. Comparison of both criteria with respect to the radius r
where u the ideal image is known. 1(a) represents the comparison of
the criteria for the data defined by an out-of-focus degraded (blurred)
image, the blur radius is equal to » = 7 and 1(b) is the comparison
of the criteria where the data is defined by the new operator given
by (15) for » = 7. For both examples, the order of the truncature
N = 30.

Now, we suppose that the radius r is known and we would
like to find u, an approximation of the ideal image.

The figure 2 presents the criterion (2) in the convolutive
case (where k is an out-of-focus kernel (4)) and with proposed
model (15) with respect to the iterations. The convergence
toward the optimum is quite similar. This shows that, from a

i classic vs new model

Fig. 2. The criteria decay with respect to the iterations

(a) Original (real) blurry image

Joelle SIMAH

(b) restored image by the convolutive model

Joélle SIMAH

(c) restored image by the new model

Fig. 3. restoration of an out-of-focus blurred image when r is un-
known. 3(a) represents the original image, 3(b) the restored image
with the convolutive model and 3(c) the restoration by the proposed
model (r ~ 10 with N = 50).

numerical viewpoint, the new approach is in accordance with
the older approach (convolutive model).

The figure 3 compares the results given by both models.
The chosen test (real-life) image has been acquired by a cam-
era phone without autofocus (the mobile: Nokia N70). This
image (494 x 125) is a part of a visit card (V-Card). An inter-
esting application of the proposed method is a preprocessing
step in order to scan and recognize text or barcode in docu-
ment acquired by a camera phone or a digicam (see [4, 5]).
Here, of course the blur is unknown. We are in the blind de-
blurring case. We suppose that the main distortion of this
image is an out-of-focus blur plus a gaussian noise. So, we
must give an approximation of the blur radius r . Many ap-
proaches may be used, for example we can estimate simul-
taneously r with the original image or, when we deal with
an out-of-focus blur, we can firstly estimate an approxima-
tion of r in the cepstral domain (see [13]) then we use our



(a) original image

Joelle SIMAM

(b) binarization of the restored image (convolutive
model)

Jogélle SIMAM

(c) binarization of the restored image (new model)

Fig. 4. restoration of an out-of-focus blurred image when 7 is un-
known. 4(a) represents the original image, 4(b) a binarization of the
restored image with the convolutive model and 4(c) a binarization of
the restoration with the proposed one.

method when r is estimated. An estimation of the radial blur
isrT ~ 10 and N = 50. The figure 4 is a classical binariza-
tion of the restored images, it is interesting to notice that the
texts (in the restored images) have been read (recognized) by
different text recognition software, namely the software “AB-
BYY” (see [14]) and the software “Cardiris” (see [15]). Of
course, they don’t recognize the blurred image.

5. CONCLUSION

A novel model for blind deblurring is presented in this pa-
per. Based on the moment problem for the PSF estimation,
we avoid the convolution which is very expensive. We can
restore a blurred image in reasonable computation time. In
other words, we could expect to obtain a good restoration
rapidly (it depends only on a recursive laplacian). Moreover,
we propose a robust algorithm allowing a simultaneous com-
puting of the blur kernel and the estimated deblurred image.
In particular, this approach has been successfully applied to
restore blurred images taken from a camera of very poor qual-

ity.
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