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ABSTRACT

A plethora of security schemes for wireless sensor networks

(WSNs) has been proposed and their resilience to various at-

tacks analyzed; including situations the adversary compro-

mises a subset of the WSN nodes and/or deploys own mis-

behaving devices. The higher the degree of such intrusion

is, the more effective an attack will be. Consider, however,

an adversary that is far from omnipotent: How should she

attack, how should she deploy her resources to maximally af-

fect the attacked WSN operation? This basic question has re-

ceived little attention, with one approach considering genetic

algorithms for devising an attack strategy [5]. In this work,

we recast the problem towards a more systematic treatment

and more computationally efficient solutions: a combination

of a genetic algorithm with a convex relaxation, and an ℓ1-

constraint formulation. The devising of near-optimal attack

strategies efficiently strengthens the adversary, allowing her

to adapt and mount effective and thus harmful attacks even in

complex and dynamically changing settings.

Index Terms— Attack, cryptographic key, genetic algo-

rithm (GA), security.

1. INTRODUCTION

Wireless sensor networks (WSNs) cover a broad range of

applications that are vulnerable to attacks. Security and re-

silience are therefore highly desirable and a broad gamut of

security schemes for WSNs have been proposed for, e.g.,

cryptographic key management [4], secure communication

[9], secure data aggregation [1], data confidentiality [7], and

sybil attack detection [8].

In spite of the protection such schemes provide, an ad-

versary can work her way into the network: compromise

nodes and cryptographic keys, and then control those nodes

and/or deploy her own devices. In principle, the more security

schemes are in place, the lesser the effect of the adversarial

nodes on the WSN operation. But the stronger the presence

of the adversary, simply put the more nodes she controls, the

more severe the harm done: the more links compromised,

the more nodes masqueraded, the more bogus measurements

injected.

Nonetheless, the adversary cannot be omnipotent, that is,

have an overwhelming number of devices deployed or com-

promise the vast majority of the WSN cryptographic keys.

If she did, it would be trivial to take over the WSN (or es-

sentially deploy her own). What is interesting are powerful

yet bounded adversaries. For those, the pertinent question

is: How can they best deploy their “forces”? In other words,

how to utilize their physical presence and cryptographic key

knowledge, in order to affect the more the attacked WSN op-

eration?

This question is important for the WSN security design-

ers, to assess the ability of the adversary. The only inves-

tigation on this question, to the best of our knowledge, was

done recently in [5], in an application- and security-protocol-

agnostic manner. A solution to determine a close-to-optimal

attack was proposed, combining a genetic algorithm (GA)

with a dynamic programming (DP) stage. The resultant com-

putational complexity is not, perhaps, a severe limitation if

the WSN is not a large scale one or it is not mobile, or if it is

not part of a dynamically changing cyber-physical system.

But, here, we want to see if the adversary can use efficient

algorithms that would enable optimized attacks even under

such challenging conditions. Moreover, we want to further

systematize the treatment of the problem. We first approach

the problem by combining a GA and a convex relaxation (CR)

stage and then by formulating it in an ℓ1-constraint framework

[2, 3], with convex solvers to obtain solutions. We assume the

problem is noiseless, in the sense that no unknown random

process affects its parameters, i.e., a deterministic setup. In

the ℓ1-constraint case, sparse solution vectors of determinis-

tic optimization problems have only to be derived, with so-

lution entries known beforehand and only the support being

unknown. To the best of our knowledge, this is the first time

such an approach is taken on an adversarial resource alloca-

tion problem.

Next, we define the system (Sec. 2). The adversary model

and the problem formulation at hand are presented in the se-

quel (Sec. 3). Then, we develop the (adversarial) solution

to the problem, our GA-CR and the ℓ1-constraint approaches

(Sec. 4), and evaluate them through simulations (Sec. 5).

Notation. For a set M, |M| denotes its cardinality. ∪ is

the set union and ∅ the empty set. N is the set of nonnegative

integers and R+ is the set of positive real numbers. Vectors
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are denoted by bold lower case letters, while for a vector a

its ith entry is denoted by ai or by [a]i . For a vector x we

define the index function I(xi) = i if xi 6= 0 and 0 other-

wise. Moreover, ‖x‖0 is the zero “norm” of x which equals

the number of nonzero entries in x and ‖x‖1 is its ℓ1-norm.

1m denotes the m × 1 all one vector. Finally, T denotes the

transposition operator.

2. SYSTEM MODEL

We model the WSN as a set of n nodes divided in N clus-

ters, S = {C1, C2, . . . , CN}. We assume that the clusters

are formed based on the requirements of the supported appli-

cation and the monitored area and phenomena. The number

of benign nodes within a cluster Ci is given by the function

Fben(Ci) : S → N, with Fben(Ci) = |Ci|. Fig. 1 illustrates a

WSN with four clusters.

Each cluster has a utility or a value for the WSN opera-

tion, with Fval : S → R+ mapping clusters to utility values,

Fval(Ci) = Vi. The total WSN utility, Utotal, is the sum of

the cluster utilities:
∑N

i=1 Vi = Utotal.

The cluster value assignment is application-, deployment-

and conditions-specific and we do not dwell further on it.

For example, for a facility monitoring or disaster relief en-

abling WSN: a cluster with 3 nodes close to the point of in-

terest (where an incident occurs) is greater than that of a 100-

node cluster further away; while for an environment measur-

ing WSN, more populated clusters could be more valuable.

We remain protocol- and security-mechanism agnostic,

as in [5], and assume only that each benign node has a unique

identity corroborated by a single cryptographic key. In a sim-

ple data collection setup, this can be a symmetric key shared

between each WSN node and the sink. Clearly, security

mechanisms leveraging these and other cryptographic keys

can very well be present. But for the problem at hand, we

make no further assumptions focusing on this simple setup.

3. ADVERSARY MODEL

The adversary controls Rphy physical devices and Rcrypto

cryptographic keys. The former can be either compromised

nodes among the initially benign ones or devices the adver-

sary possesses and deploys. The latter can be compromised

keys in possession of benign nodes (e.g., read out of their

memory) or keys the adversary obtained in any way but are

legitimate for the WSN.

We assume that Rphy ≤ Rcrypto, that is, the adversary

can equip each of her nodes with more than one keys. This,

in practice, means that such a device, e.g., the one labeled

“2” in C3 of Fig. 1, can masquerade two distinct nodes to the

sink (and thus provide seemingly distinct measurements). We

assume the adversary is not re-using any of her Rcrypto keys,

i.e., she is not assigning one of those keys to more than one of

her nodes simultaneously; this ensures the adversarial nodes

Fig. 1. A WSN under attack

do not trigger a sybil detection scheme.1

We equip the adversary with the knowledge of both Fben

and Fval, that is, knowledge on the network and what is to be

gained by controlling each cluster. The larger part of Utotal

the adversary controls, the more successful the attack. To

achieve this, the adversary needs to control a subset of the

clusters. To do so, she has to deploy across the WSN clusters

her Rphy physical devices and distribute to them her Rcrypto

cryptographic keys to maximize her utility Umal. Mathemat-

ically formulated, the problem statement is:

maxπphy,πcrypto
Umal, (1)

where πphy and πcrypto denote the distribution of adversarial

nodes across clusters and the distribution of keys among ad-

versarial nodes, respectively. The adversary must first select

a subset, M , of clusters to attack, |M | ≤ Rphy , by allocating

malicious nodes to them. Then, she must distribute the avail-

able cryptographic keys among these nodes. Both choices

critically affect the achievable utility value Umal.

The Umal is the aggregate of the utilities of the clusters

under adversarial control. “Taking over” a cluster depends

on the WSN protocols and its security mechanisms in place.

We abstract these away with the help of an Fcost : S → N

function, the cost in terms of physical and cryptographic re-

sources) of controlling a cluster. Given the protocol under

attack and the protection mechanism(s), one has to define an

appropriate Fcost. Here, for simplicity in presentation and

due to space limitations, we consider Rcrypto ≥ Fcost(Ci) ≥
Fben(Ci)/2+1, that is, an adversary is deploying in each clus-

ter she chooses to attack a number of keys capable to become

the majority in the cluster. In C1 of Fig. 1, she deploys two

physical nodes with one and three keys respectively, thus con-

trolling four versus three benign nodes (and keys; recall the

assumed one-to-one correspondence). With such a majority,

the data can be heavily influenced and even distributed proto-

col executions (e.g., consensus) could be under the control of

the adversary.

1We plan to relax this condition, i.e., strengthen the adversary in partially

re-using her keys across the WSN in future work.
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4. ADVERSARIAL METHODS

For the cluster selection, the authors in [5] have proposed the

use of genetic algorithms. The main algorithmic structure is a

chromosome with a number of genes equal to Rphy . The ap-

propriateness of a chromosome is evaluated on the basis of a

fitness function, while evolutionary techniques of probabilis-

tic nature are applied to force the GA to converge towards

better solutions dictated by the fitness function. The mecha-

nism driving the evolution process is based on two fundamen-

tal operators usually defined in the context of GAs, namely,

the mutation and the cross-over operators. The mutation op-

erator takes in a candidate chromosome solution and prob-

abilistically changes one or more of its genes. The proba-

bility of changing a gene, as well as, the number of genes

to be changed probabilistically are operator parameters to be

decided by the adversary. The cross-over operator receives

two candidate chromosome solutions and produces a new off-

spring candidate chromosome by combining the two parental

chromosomes. The way that the offspring is produced can

again be parameterized in the context of the cross-over oper-

ator by the adversary with the corresponding parameter being

in this case the cross-over point. In essence, the two parental

chromosomes generate a new chromosome by combining the

first m genes of the one chromosome with the last K − m
genes of the other chromosome. Here, K is the number of

genes in a chromosome and m is the cross-over point. Illus-

trations of these operators are given in [5].

4.1. A GA-CR Approach

Problem (1) can be approached by imitating the treatment is

[5]. Defining a chromosome of size Rphy with each gene as-

sociated to a specific cluster, a GA is applied to a population

of chromosomes to select a candidate chromosome solution,

i.e., a candidate subset of clusters to attack to. The fitness

function corresponds to the achieved Umal by each chromo-

some. This value is dictated by the assignment of the cryp-

tographic keys among the malicious nodes. The GA will be

executed for an empirically selected number of evolutions or

as long as Umal is not improving for a predefined number of

evolutions. Furthermore, to allow the possibility that an opti-

mal cluster selection has less than Rphy genes, we allow the

chromosomes to have empty genes.

The key distribution problem can be relaxed to a convex

optimization problem as follows. Given a candidate chromo-

some solution C ′ = {C ′

1, C
′

2, . . . , C
′

Rphy
} with C ′

i ∈ S ∪ ∅

and C ′

i 6= C ′

j when i 6= j unless C ′

i = C ′

j = C ′

0 = ∅, we

define the vectors

fval(C
′) =

[

Fval(C
′

1), Fval(C
′

2), . . . , Fval(C
′

Rphy
)
]T

f cost(C
′) =

[

Fcost(C
′

1), Fcost(C
′

2), . . . , Fcost(C
′

Rphy
)
]T

(2)

Here, we assume that Fval(∅) = Fcost(∅) = 0.

The optimal key distribution problem can be set as

maxx Umal = fT
val(C

′)x

s.t. fT
cost(C

′)x ≤ Rcrypto

xi ∈ {0, 1}, i = 1, 2, . . . , Rphy, (3)

which is a 0 − 1 integer linear program and it is among the

Karp’s 21 NP-complete problems [6]. The problem can be

relaxed by replacing the last line with box constraints leading

to

maxx fT
val(C

′)x

s.t. fT
cost(C

′)x ≤ Rcrypto

0 ≤ xi ≤ 1, i = 1, 2, . . . , Rphy (4)

The last problem is convex [10] and can be efficiently

solved.

Remarks:

1. The GA-CR approach is essentially the same as the one

proposed in [5]. The difference is that in [5], (3) is

solved by applying dynamic programming leading to a

great computational burden on top of the GA algorithm,

as the size of the problem increases. Formulation (4)

greatly alleviates the burden of dynamic programming

at the cost of losing some optimality in the achievable

Umal.

2. We need some sort of thresholding to obtain a final x

containing binary entries. This can be achieved, e.g., by

simply setting to 1 all the entries of x such that xi ≥ ε,

for some ε ∈ [0, 1).

3. Due to the aforementioned thresholding operation, the

obtained binary x may fail to satisfy the inequality con-

straint in (3) and (4). We can resolve this problem by

following the principle of least restriction: Initially,

(4) is solved with Rcrypto and we gradually decrease

Rcrypto’s value by 1 till we obtain the first binary x

satisfying fT
cost(C

′)x ≤ Rcrypto. In this last inequal-

ity test, Rcrypto should assume its initial (maximum)

value.

4. The implication of problem (4) is that there is no need

to allocate physical devices in a gene that no keys will

be distributed. These devices may be reserved for fu-

ture attacks by the adversary.

4.2. An ℓ1-Constraint Approach

Instead of using the GA approach to identify candidate chro-

mosome and key distribution solutions, we will treat both the

cluster selection and the key distribution subproblems simul-

teneously. We define two N × 1 binary vectors c and y with

entries in {0, 1}. Furthermore, we can set the N × 1 vectors

fval(c) and f cost(c) such that

[fval(c)]i = Fval(CI(ci)
), [f cost(c)]i = Fcost(CI(ci)

)

3
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Here, we assume again that C0 = ∅ and that Fval(∅) =
Fcost(∅) = 0.

The vector c contains at most Rphy 1’s. These 1’s des-

ignate a selected cluster with index the corresponding index

of the ci entry. Similarly, the vector y contains at most Rphy

1’s, each one designating if the adversary will or not assign

cryptographic keys to the nodes of a selected cluster given

our predescribed attack setup. The problem of optimal adver-

sarial resource allocation can be posed as follows:

maxc,y fT
val(c)y

s.t. fT
cost(c)y ≤ Rcrypto

‖c‖0 ≤ Rphy, ‖y‖0 ≤ Rphy

ci ∈ {0, 1},yi ∈ {0, 1}, i = 1, 2, . . . , N (5)

The last problem is clearly hard. Nevertheless, since ci ∈
{0, 1} and yi ∈ {0, 1} for all i, it follows that

‖c‖0 = ‖c‖1, ‖y‖0 = ‖y‖1 (6)

Using (6) and removing the binary constraints, problem

(5) can be relaxed to the following formulation:

maxc,y fT
val(c)y

s.t. fT
cost(c)y ≤ Rcrypto

‖c‖1 ≤ Rphy, ‖y‖1 ≤ Rphy

0 ≤ ci ≤ 1, 0 ≤ yi ≤ 1, i = 1, 2, . . . , N (7)

The last problem is still nonconvex due to the bilinear na-

ture of the objective and the first constraint as well as the dis-

crete value set of fval(c) and f cost(c). Nevertheless, one

may observe that in our context y depends on c in the sense

that it can only have 1’s in positions that c has 1’s. I.e., we

can only assign keys to malicious nodes allocated in certain

clusters. Furthermore, in our context placing nodes to clus-

ters without assigning keys to them is useless. With this in

mind, the selection of an optimal y can indicate the selection

of an optimal c. Therefore, a convex relaxation of (7) can be

obtained as follows:

maxy fT
val(1N )y

s.t. fT
cost(1N )y ≤ Rcrypto

‖y‖1 ≤ Rphy

0 ≤ yi ≤ 1, i = 1, 2, . . . , N (8)

This problem is convex. The corresponding c can be se-

lected to coincide with y after applying the necessary thresh-

olding to the Rphy largest entries of the obtained y, while

zeroing the remaining N − Rphy entries. Furthermore, the

principle of least restriction may again be employed.
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Fig. 2. Trajectory of the GA-CR approach for N =
20, Rphy = 6, Rcrypto = 30. Furthermore, the mutation

parameter is 6 and the corresponding cross-over point is 3.

Thresholding with ε = 0.1.

5. SIMULATIONS

In this section, numerical results will be presented to illus-

trate the performance of the proposed approaches. We se-

lect Fcost(Ci) = Fben(Ci)/2 + 1. For the GA-CR approach,

we initially select a population of 500 chromosomes possibly

containing empty genes. We maintain only the best 10% of

them in terms of their Umal. This 10% is augmented to the

initial population size by using either mutation or cross-over.

Mutation or cross-over are selected with probability 0.5.

In Fig. 2, a trajectory of the GA-CR algorithm with re-

spect to the number of evolutions is presented. We assume a

network with N = 20 clusters, each one containing from 1
to 30 nodes. The parameters Rphy and Rcrypto are selected

to be 6 and 30, respectively. Mutation is performed for 6
genes, while in the case of cross-over, the first 3 genes be-

long to the initial chromosome and the rest Rphy − 3 to a

randomly selected chromosome among the current top 10%.

Binary solution vectors are obtained by thresholding the ob-

tained solution vectors with ε = 0.1 and by applying the least

restriction principle if necessary. The final Umal/Utotal in

this plot corresponds to 0.4426. This value was obtained af-

ter a long execution time due to the GA algorithm. For the

same problem parameters, the ℓ1-constraint approach was ter-

minated in 2 CVX executions (due to least restriction) with

achieved Umal/Utotal equal to 0.4426. Clearly, this example

illustrates the fact that the complexity-achieved Umal tradeoff

is in favor of the ℓ1-constraint approach. This would be the

case even if we knew beforehand the number of evolutions

needed to reach the performance saturation point, since even

a single evolution of the GA algorithm has high complexity

for a reasonable population size.

Focusing now on the ℓ1-constraint approach, Fig. 3

demonstrates a very interesting aspect of this algorithm2. We

plot the trajectory of the ℓ1-constraint algorithm for fixed

N = 50 and Rcrypto = 100 versus Rphy . Rphy is allowed

2Clearly, this behavior characterizes the GA-CR algorithm, as well.
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Fig. 3. ℓ1-constraint approach for N = 50 and Rcrypto = 100
with respect to Rphy . Thresholding with ε = 0.1.
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Fig. 4. ℓ1-constraint approach for N = 50 and Rphy = 20
with respect to Rcrypto. Thresholding with ε = 0.1

to take values in the range of 1 to Rcrypto. We observe that

as Rphy increases, the achievable Umal tends to saturate. The

saturation is quickly reached as compared with Rcrypto. This

plot essentially shows that a smart adversary should not dis-

tribute her physical devices in many different clusters when

she can do it. Instead, she may use a small fraction of her

devices while attacking to the network and preserve the rest

of them for future use. The saturation point is dictated by

Rcrypto meaning that after placing devices to the ‘best’ pos-

sible clusters with respect to maximizing Umal while using

all the available keys, placing new devices in other clusters is

meaningless if no keys are available.

Finally, the same saturation behavior seems to hold with

an increasing Rcrypto when N and Rphy are fixed. This is

demonstrated in Fig. 4 for N = 50 and Rphy = 20. In this

plot, the total number of nodes in the network is 806. This

figure demonstrates the fact that a smart adversary should not

waste a lot of resources in trying to obtain as many crypto-

graphic keys as possible with respect to the total number of

nodes in the network, since the number of nodes in the Rphy

‘best’ clusters from an attack point of view poses a limitation.

6. CONCLUSIONS

In this paper, a general setup of allocating adversarial re-

sources to maximize the attack effect in a WSN was investi-

gated. Two different approaches were presented to tackle the

problem. The first was based on the combination of a GA

with a CR stage. The second was based on an ℓ1-constraint

formulation of the problem. The complexity-attack effect

tradeoff was shown to be in favor of the second approach.
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