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ABSTRACT

Delay/Doppler radar altimetry has been receiving an increas-
ing interest, especially since the launch of the first altimeter in
2010. It aims at reducing the measurement noise and increas-
ing the along-track resolution in comparison with conven-
tional pulse limited altimetry. A semi-analytical model was
recently introduced for this new generation of delay/Doppler
altimeters. The first contribution of this paper is the derivation
of the Cramér-Rao bounds (CRBs) associated with the param-
eters of this recent delay/Doppler model. These bounds are
then compared with those obtained for conventional altime-
try. The second contribution of this paper is the derivation
of a new weighted least squares estimator based on the semi-
analytical delay/Doppler model. The performance of this es-
timator is very promising when compared to other more clas-
sical estimators and to the corresponding CRBs.

Index Terms— Cramér-Rao bounds, delay/Doppler map,
least squares estimation, maximum likelihood estimation,
SAR altimetry.

1. INTRODUCTION

The concept of delay/Doppler radar altimetry was introduced
in [1]. However, more than 10 years were necessary to de-
velop the first altimeter which was launched in 2010 with
the Cryosat-2 satellite. Delay/Doppler altimeters aim at re-
ducing the measurement noise and increasing the along-track
resolution, i.e., reducing the observed surface in comparison
with conventional pulse limited altimeters. Noise reduction
is obtained by increasing the number of observations which
allows a better estimation of the physical parameters of in-
terest. The increase of resolution is achieved by using the
information contained in the Doppler frequency (related to
the satellite velocity). The resolution improvement can be
advantageously exploited to process altimetric measurements
closer to the coast. One can expect to extract useful infor-
mation from oceanic cells located up to 300 meters from the
coast whereas the minimum accepted distance is about 10 km
for conventional altimetry (CA). The first part of this paper in-
troduces the semi-analytical model for delay/Doppler altime-
try (DDA) that was recently defined in [2, 3]. This model

expresses the altimetric waveform as a function of three pa-
rameters: the significant wave height SWH, the epoch τ (re-
lated to the distance between the satellite and the observed
oceanic surface) and the amplitude Pu (related to the speed of
the wind).

The first contribution of this paper is the derivation of
the Cramér-Rao bounds (CRBs) of the parameters associated
with the semi-analytic delay/Doppler altimetric model. These
CRBs are then compared with the CA bounds in order to
demonstrate the expected improvement of performance ob-
tained with DDA. The second contribution of this paper is the
study of a new weighted least-squares (WLS) estimator for
the parameters of the semi-analytical delay/Doppler model.
This estimator combines the good properties of the standard
least-squares (LS) estimator [4, 5] (i.e., its reduced compu-
tational cost) and of the maximum likelihood estimator (i.e.,
reduced mean square errors for the estimates).

The paper is organized as follows. Section 2 describes the
CA and DDA models investigated in this study. The CRBs as-
sociated with the parameters of these models are established
in Section 3. Section 4 presents different methods for estimat-
ing the parameters of the CA and DDA models. In particular,
a new estimator minimizing a WLS criterion is introduced.
Simulation results are presented in Section 5. Conclusions
and future work are finally reported in Section 6.

2. DATA MODEL

This section introduces the models considered for conven-
tional and delay/Doppler altimetry.

2.1. Conventional altimetry

The conventional altimetric signal can be expressed as the
convolution of three terms: the flat surface impulse response
(FSIR), the probability density function (PDF) of the height
of the specular scatterers and the point target response of the
radar (PTR) as follows [6]

sc(t) = FSIR(t) ∗ PDF(t) ∗ PTRT (t) (1)

with

FSIR(t) = Pu exp

[
− 4c

γh
(t− τs)

]
U (t− τs) (2)
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Fig. 1. Propagation circles (in black) and Doppler beams (in
green) for conventional and delay/Doppler altimetry.

PDF(t) =

√
2

π

c

SWH
exp

(
−2

c2t2

SWH2

)
(3)

PTRT (t) =

∣∣∣∣∣ sin
(
π t
T

)
π t
T

∣∣∣∣∣
2

(4)

where t is the time, τs is the epoch expressed in seconds, c
is the speed of light, T is the time resolution, γ is an antenna
beamwidth parameter, h is the minimum satellite-surface dis-
tance and U(.) denotes the Heaviside function.

2.2. Delay/Doppler altimetry

The mean power of a delay/Doppler echo can also be ex-
pressed as the convolution of three terms [7]. However, the
power term depends on two dimensions, i.e, time and Doppler
frequency [8], leading to

P (t, f) = FSIR(t, f) ∗ PDF(t) ∗ PTR(t, f) (5)

with

PTR(t, f) = PTRT (t)PTRF (f), PTRF (f) =

∣∣∣∣∣∣
sin
(
π fF

)
π fF

∣∣∣∣∣∣
2

(6)
where F is the frequency resolution. The FSIR is obtained
by integrating the energy contained in the intersection of the
propagation circles with the N = 64 rectangular beams re-
lated to Doppler frequencies (see Fig. 1) [2, 3]

FSIR(t, n) =
Pu
π

exp

[
− 4c

γh
(t− τs)

]
U (t− τs)

×
[
φt,n+1(τs)− φt,n(τs)

]
(7)

with

φt,n(τs) = Re

[
arctan

(
yn√

ρ2(t− τs)− y2n

)]
(8)

where n = 1, · · · , N , N = 64 being the number of Doppler
beams, ρ(t) =

√
hct is the radius of the propagation cir-

cles, yn = hλ
2vs

fn is the ordinate of the nth Doppler beam,

fn = (n− 32.5)F is the nth Doppler frequency (32.5 allows
to obtain a central beam), vs is the satellite velocity, λ is the
wavelength and Re(x) denotes the real part of the complex
number x.

Eq. (5) provides a two dimension image known as de-
lay/Doppler map. In order to obtain a “multi-look” altimet-
ric waveform, a delay compensation operation is applied to
each Doppler beam followed by the sum of these beams [1,9].
The resulting multi-look delay/Doppler signal can be written
sd(t) =

∑N
n=1 P (t− δtn, fn), where δtn is the delay com-

pensation expressed in seconds.

2.3. Comparison between CA and DDA waveforms

The altimetric signals sc(t) and sd(t) are classically sam-
pled at time instants tk = k T , for k = 1, · · · ,K, where
K = 104 is the number of samples. The epoch is then ex-
pressed as a “gate number” τ with τs = τT . The resulting
discrete signals denoted as sc = [sc(1), · · · , sc(K)]

T and
sd = [sd(1), · · · , sd(K)]

T depend on the altimetric param-
eter vector θ = (SWH, τ, Pu)

T . Fig. 2 compares typical de-
lay/Doppler (in blue) and conventional altimetric echoes (in
red) for two values of SWH (SWH = 2 m and SWH = 8
m) and (τ, Pu) = (31, 1). It is interesting to note that the
delay/Doppler echo has a peaky shape around the epoch be-
cause of delay compensation. Note also that the variation of
SWH affects the form of the DDA echo while it only changes
the slope of the CA echo around the epoch τ = 31.

Fig. 2. Examples of delay/Doppler and conventional echoes
for two values of SWH and (τ, Pu) = (31, 1).

3. CRAMÉR-RAO BOUNDS

3.1. Conventional altimetry

The observed altimetric signal sc is corrupted by a multi-
plicative speckle noise distributed according to an exponen-
tial distribution [10]. In order to reduce the influence of this
noise affecting each individual echo, a sequence of L con-
secutive waveforms is averaged on-board the satellite. As-
suming pulse-to-pulse statistical independence and invoking
the central limit theorem, the averaged signal can be written
yc(k) = sc(k) [1 + n(k)] , for k = 1, · · · ,K, where n(k) is
approximately distributed according to a zero mean Gaussian

2
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distribution with variance 1/L i.e., n(k) ∼ N (0, 1/L). An
equivalent formulation is

yc(k) = sc(k) + n′(k), k = 1, · · · ,K (9)

where n′(k) ∼ N (0, s2c(k)/L). Using (9) and assuming inde-
pendence between the signal samples, the likelihood function
of the vector of observations yc can be computed. It is the
probability density function of a multivariate Gaussian dis-
tribution (denoted as f(yc|θ)) with mean sc and whose co-
variance matrix Σ (θ, L) is diagonal with diagonal elements
Σk(θ, L) = s2c(k)/L, for k = 1, · · · ,K. The Fisher infor-
mation matrix (FIM) of the parameter vector θ can then be
computed by differentiating twice the log-likelihood function
(see [8] for more details)

F c = DT
c Σ−1(θ, L+ 2)Dc (10)

where Dc is a (K × 3) matrix whose components are
Dc(k, i) = ∂sc(k)

∂θi
, for k = 1, · · · ,K and i = 1, · · · , 3.

The analytical expressions of these matrix components are
not given in the present paper for space limitations but are
available in a separate technical report [8]. Note that the
proposed CRBs differ from those derived in [11] since the
present paper considers the double convolution model (1)
whereas the Brown model [6] was used in [11].

3.2. Delay/Doppler altimetry

Each Doppler beam has a size of about 300 meters which
means that it is observed by the satellite during 43 ms (af-
ter taking into account the satellite velocity). Moreover, the
satellite transmits 85 bursts of N = 64 pulses per second. As
a consequence, each Doppler beam is observed by approxi-
mately 4 independent bursts, i.e., it is observed by Np = 256
pulses. The observed discrete multi-looked echo can be ex-
pressed as

yd(k) =

N∑
n=1

m (k, n) b(k, n) (11)

where m(t, fn) = P (t− δtn, fn) denotes the signal of the
nth Doppler beam after delay compensation and b(k, n) is
an independent and gamma distributed speckle noise (whose
shape and scale parameters equal 4) resulting from the aver-
age of 4 bursts. Invoking the generalized central limit theo-
rem for sums of independent non-identically distributed ran-
dom variables (e.g., the Lyapunov condition [12]), it makes
sense to approximate the distribution of yd(k) by a Gaus-
sian distribution whose mean is

∑N
n=1m (k, n) and whose

covariance matrix Λ (θ) is diagonal with diagonal elements
Λk (θ) = 1

4

∑N
n=1m

2 (k, n), for k = 1, · · · ,K. The FIM of
the parameter vector θ can then be computed leading to

F d = DT
d Λ−1 (θ)Dd +Hd (12)

where Dd is a (K × 3) matrix whose components are
Dd(k, i) = ∂sd(k)

∂θi
, for k = 1, · · · ,K and i = 1, · · · , 3

andHd is given by

Hd(i, j) = 2

K∑
k=1

hi(m, k)hj(m, k)[∑N
n=1m

2(k, n)
]2 (13)

where
hi(m, k) =

N∑
n=1

m(k, n)
∂m(k, n)

∂θi
(14)

for (i, j) ∈ {1, 2, 3}2. The analytical expressions of the par-
tial derivates of m(k, n) with respect to Pu, τ and SWH are
available in [8]. Note that the covariance matrix Λ (θ) of the
observed signal yd (which depends on the different signals
m(k, n)) can be rewritten as a function of the multi-look echo
sd. For that purpose, an “effective number of looks” can be
defined for the kth observation [9]

Neff(k) =
E2 [yd(k)]

E
{

[yd(k)− E (yd(k))]
2
} = µ(k)Np (15)

where the components of the vector µ are

µ(k) =

[∑N
n=1m (k, n)

]2
N
∑N
n=1m

2 (k, n)
=

s2d(k)

N
∑N
n=1m

2 (k, n)
. (16)

Note that µ(k) is smaller than 1 accounting for the fact that
Neff(k) is smaller than Np (see [9]). Using the previous nota-
tions, the kth diagonal element of the covariance matrix Λ (θ)

can be written Λk (θ) =
s2d(k)
Npµ(k)

, for k = 1, · · · ,K. This ex-
pression is similar to the one obtained for CA (the number of
looks L has been replaced by Npµ(k) in the kth element of
Λ). Assuming a small variation of µ with respect to the alti-
metric parameters, (i.e., ∂µ

∂θi
≈ 0, for i ∈ {1, 2, 3}) leads to

F d ≈DT
d ∆−1 (θ)Dd (17)

where ∆ is a diagonal matrix with elements ∆k (θ) =
s2d(k)

Npµ(k)+2 , for k = 1, · · · ,K. Note that the FIM (17) has the
same form as the one obtained for CA (10).

4. ESTIMATION METHODS

This section introduces the estimation methods considered in
this study. The first method is based on the LS estimator that
has received much attention in the literature [4,5]. The second
method is based on the maximum likelihood principle which
provides asymptotically efficient estimators. A third estima-
tor constructed from a WLS criterion is finally investigated.

4.1. Least squares estimator

The LS estimator is classically defined as

θ̂LS = argmin
θ

[y − s(θ)]
T

[y − s(θ)] (18)

where y is the observed echo (y = yc for CA and y = yd
for DDA), s(θ) is the analytical waveform parameterized by

3
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θ = (SWH, τ, Pu)
T (s(θ) = sc(θ) for CA and s(θ) =

sd(θ) for DDA). Since s(θ) is a complicated nonlinear func-
tion of SWH and τ , the optimization problem (18) does not
admit a closed-form expression. In this paper, we propose to
solve (18) using a numerical optimization method based on
the Levenberg-Marquardt (LM) algorithm [13].

4.2. Maximum likelihood estimator
The maximum likelihood estimator (MLE) of θ denoted
as θ̂ML is obtained by maximizing the likelihood function
f(y|θ) with respect to θ or by minimizing the negative log-
likelihood. Straightforward computations show that the MLE
of θ reduces to minimize the following cost function

C (θ) = ln [det (Ω(θ))] + [y − s(θ)]
T

Ω−1(θ) [y − s(θ)]

=

K∑
k=1

ln [Ωk(θ)] +

K∑
k=1

[yk − sk(θ)]
2

Ωk(θ)
(19)

where Ω(θ) is the covariance matrix of y (Ω = Σ for CA and
Ω = Λ for DDA). The MLE is asymptotically efficient and
is thus expected to provide the smallest estimation variances.
Unfortunately, the LM algorithm, which solves LS problems,
cannot be applied to optimize (19) because of its form. In this
study, we have optimized (19) using the Nelder-Mead (NM)
algorithm [13].

4.3. Weighted least squares estimator

The MLE θ̂ML has nice asymptotical properties (it is asymp-
totically unbiased, convergent and asymptotically efficient)
under mild assumptions. However, its application to de-
lay/Doppler altimetry requires the use of an optimization
algorithm (such as the NM algorithm) whose computational
cost can be prohibitive [14]. An alternative is the WLS esti-
mator defined as

θ̂WLS = argmin
θ

[y − s(θ)]
T

Ω−1(θ) [y − s(θ)] . (20)

An interesting property of this estimator is that the optimiza-
tion problem (20) can be solved by using the LM algorithm
(contrary to the optimization problem associated with the
MLE). Note that a WLS estimator using a constant weighting
matrix was proposed in [15]. The estimator (20) differs from
this estimator since the weighting matrix Ω−1(θ) depends on
θ. Motivations for using this weighting matrix can be found
in [16].

5. SIMULATION RESULTS

The first experiments compare the square roots of the CRBs
(RCRBs) obtained with CA and DDA in order to show
the possible performance improvement when using the de-
lay/Doppler concept. In a second step, we evaluate the per-
formance of the three estimation algorithms introduced in
Section 4 for DDA. This comparison is conducted by com-
paring the root mean square errors (RMSEs) of the different

estimators. The CRBs of the different parameters are also
displayed to show whether there is some hope for improving
estimation performance or not.

5.1. Comparison between CA and DDA

Fig. 3 shows the RCRBs of the three altimetric parameters for
both CA and DDA when varying SWH in the interval [1, 8]
meters. This figure shows a clear improvement for RCRB(τ)
and RCRB(Pu) when considering DDA. For instance, for
SWH = 2 m, we note an improvement by a factor of 1.7 for
RCRB(τ) and by a factor of 1.28 for RCRB(Pu). It can also
be observed that for small sea wave heights (i.e., SWH < 5
m), RCRB(SWH) is slightly higher for DDA than for CA.
However, the possible improvement in the estimation of the
epoch and amplitude is clearly of major importance.

Fig. 3. RCRBs for delay/Doppler altimetry (DDA) and con-
ventional altimetry (CA).

5.2. Estimation performance for DDA

Fig. 4 compares the RMSEs of the different estimators for
the altimetric parameters (SWH (a), Pu (b) and τ (c)). The
RCRBs are also displayed providing a reference in terms of
estimation performance. The MLE and WLS perform very
similarly. The LS estimator shows the worst performance
when compared to the ML and WLS estimators. For instance,
we can observe a gain of about 20 cm for SWH when using
WLS or MLE instead of LS. The RMSEs of the WLS and
MLE associated with the parameters SWH and Pu are very
close to the corresponding CRBs showing there is no space
for improving estimation performance for these two parame-
ters. The situation is different for the epoch parameter since
the RMSEs of the WLS and MLEs are 0.02 gates higher than
the RCRBs. Thus, there is some space for developing bet-
ter estimators for this parameter. This difference between the
RMSEs of the MLE and the RCRBs can be explained by the
fact the asymptotic region has not been reached for K = 104
samples.

Finally, it is interesting to mention that the computation
cost of the WLS estimator is significantly smaller than that of
the MLE. Indeed, estimating the parameters of a DDA wave-
form by the WLS method takes 7.4 seconds (with a MATLAB
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implementation and a 2.93 GHz i7 CPU) whereas it needs 31
seconds for the MLE. This time reduction is mainly due to
the formulation of the WLS that allows the use of the LM al-
gorithm instead of the NM algorithm. Note also that the LS
algorithm is the fastest algorithm (2.6 seconds for estimating
the parameters of a waveform) but it shows reduced perfor-
mance because it does not take into account the nature of the
noise and in particular the structure of the noise covariance
matrix.

(a)

(b)

(c)

Fig. 4. RCRBs and RMSEs for the LS, WLS and ML algo-
rithms.

6. CONCLUSIONS

This paper derived the Cramér-Rao lower bounds for the pa-
rameters of the double convolution model for radar altimetry.
This model has received a considerable attention for conven-
tional altimetry whereas its application to delay/Doppler al-
timetry is more recent. The analysis of these Cramér-Rao
bounds has confirmed that an improved estimation perfor-
mance can be expected when using delay/Doppler altimetry
(especially regarding the amplitude and the epoch of the alti-
metric waveform) instead of conventional altimetry. The gain

in estimation performance for the sea wave height strongly
depends on the value of this parameter due to the shape of the
delay/Doppler echo. Another contribution of this work is the
derivation of a new weighted least-squares algorithm which
combines the advantages of the least squares algorithm (small
computational cost) and of the maximum likelihood estimator
(high estimation performance). Prospects include the analysis
of the correlations between the estimated altimetric parame-
ters. Extending the CRBs to a more general model including
other altimetric parameters (such as antenna mispointing) is
also an interesting issue. These points are currently under in-
vestigation.
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