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ABSTRACT

In this paper, we study the problem of code design to improve

the detection performance of multi-static radar in the pres-

ence of signal-dependent clutter. Due to the lack of analytical

expression for receiver operation characteristic (ROC), an

information-theoretic criterion, namely the KL-divergence, is

considered as the design metric. The code design problem

is cast as a non-convex optimization problem with a peak-

to-average-power ratio (PAR) constraint. We devise a novel

method based on Majorization-Minimization to tackle the

arising optimization problem. Via numerical investigations, a

general analysis of the coded system performance, as well as

the behavior of the KL-divergence versus transmit energy is

provided.

Index Terms- KL-divergence, Majorization-Minimization

1. INTRODUCTION

Signal design for detection performance improvement has

been a long-term research topic in the radar literature. At

the receive side, the signals backscattered from undesired

obstacles (known as clutter) depend on the transmit signal,

whereas noise, unwanted emissions, and jammer emissions

do not depend on the transmit signal. The effect of the clutter

has been considered in early studies for single-input single-

output (SISO) systems [1, 2]. The aim of these studies is to

maximize the signal-to-interference-plus-noise-ratio (SINR)

by means of joint optimization of the transmit signal and the

receive filter. Recently, a related problem has been considered

in [3] with a peak-to-average-power ratio (PAR) constraint.

In multi-static scenarios, the expressions for detection

performance are too complicated to be amenable to utiliza-

tion as design metrics (see e.g. [4][5]). In such circumstances,

information-theoretic criteria (e.g. the Kullback-Leibler (KL)
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divergence) can be considered as design metrics to guaran-

tee some types of optimality for the obtained signals [5][6].

Multiple-input multiple-output (MIMO) radar signal design

has been studied in [6] using KL-divergence as design metric

in the absence of clutter. In [7], KL-divergence has been

taken into account for MIMO radar signal design in the ab-

sence of clutter. Information-theoretic criteria have also been

used in research subjects related to the detection problem [8].

In this paper, we consider the problem of multi-static

radar code design in the presence of clutter. We assume the

case of one transmit antenna, however the extension of the

derivations in this work to the case of multiple transmit an-

tennas (with orthogonal transmission) is straightforward (see

e.g. [5]). Using the KL-divergence metric, the code design

problem is formulated as a non-convex optimization problem

with PAR constraint. To the best of our knowledge, no study

of radar code design with PAR constraints using information-

theoretic criteria was conducted prior to this work. We devise

a novel method based on Majorization-Minimization (MaMi)

technique to tackle the problem. MaMi employs a successive

usage of majorization functions to obtain simpler “nearest-

vector” problems throughout its iterations.

The rest of this paper is organized as follows. Section 2

presents the data modeling and the design problem formula-

tion. The proposed code design scheme is discussed in Sec-

tion 3. Numerical examples are provided in Section 4. Fi-

nally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

2.1. Data Modeling

We consider a multi-static pulsed-radar with one transmit-

ter and Nr widely separated receive antennas. The baseband

transmit signal can be formulated as

s(t) =

N∑

n=1

anφ(t− [n− 1]TP ) (1)

EUSIPCO 2013 1569744063
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where φ(t) is the basic unit-energy transmit pulse, TP is the

pulse repetition period,N is the number of transmitted pulses,

and {an}Nn=1 are the deterministic coefficients that are to be

“optimally” determined. The vector a , [a1 a2 . . . aN ]T

is referred to as the code vector of the radar system. The base-

band signal received at the kth antenna backscattered from a

stationary target can be written as

rk(t) = αks(t− τk)︸ ︷︷ ︸
target

+ ck(t)︸︷︷︸
clutter

+ wk(t)︸ ︷︷ ︸
interference

(2)

where αk is the amplitude of the target return (including the

channel effects), ck(t) is the clutter component, wk(t) is a

Gaussian random process representing the signal-independent

interference component (including various types of noise, in-

terference, and jamming), and τk is the time corresponding

to propagation delay for the path from the transmitter to the

target and thereafter to the kth receiver. We assume that the

clutter component at the kth receiver is composed of signal

echoes produced by many stationary point scatterers located

within unambiguous-range with respect to the kth receiver.

Accordingly, the clutter component can be expressed as

ck(t) =

Nc∑

v=1

ρk,vs(t− τk,v) (3)

whereNc is the number of point scatterers, ρk,v is the “ampli-

tude” of the vth scatterer observed by the kth receive antenna,

and τk,v is the propagation delay at the kth receiver corre-

sponding to the vth scatterer for which we have τk,v ≤ Tp.

At the kth receiver, the received signal is matched filtered

by φ∗(−t). Then range-gating is performed by sampling the

output of the matched filter at time slots corresponding to a

specific radar cell. Let rk,n denote the sample of the filtered

rk(t) at t = (n − 1)Tp + τk. As {φ(t − [n − 1]Tp)}Nn=1

are non-overlapping and have unit energy, the effect of the

target signature appears as anαk at the rk,n. Furthermore, the

clutter effect can be expressed as

Nc∑

v=1

ρk,v

N∑

i=1

ai

∫ +∞

−∞

φ(τ−[i−1]Tp−t)φ∗(τ−[n−1]Tp)dτ.

(4)

Note that for unambiguous-range clutter scatterers (i.e. scat-

terers with τk,v ≤ Tp), the above integral is zero for i 6= n
because φ(t− [i− 1]Tp − τk,v) and φ(t− [n− 1]Tp− τk) are

non-overlapping. Therefore, (4) can be rewritten as

an

Nc∑

v=1

ρk,vΨn,n(τk − τk,v) , anρ̃k (5)

where Ψn,n(.) denotes the autocorrelation function of the nth

pulse. Therefore, the discrete-time signal corresponding to a

certain radar cell for the kth receiver can be described as:

rk , sk + ck +wk = αka+ ρ̃ka+wk (6)

where rk , [rk,1 rk,2 · · · rk,N ]T , wk , [wk,1 wk,2 · · ·
wk,N ]T , sk , αka, and ck , ρ̃ka. Herein, wk,n denotes the

nth sample of wk(t) and ρ̃k is a zero-mean complex Gaussian

random variable with variance σ2
c,k associated with the clutter

scatterers.

2.2. Design Problem

Using all the received signals, the target detection leads to the

following binary hypothesis problem
{
H0 : r = c+w

H1 : r = s+ c+w
(7)

where r, s, c, and w are defined by column-wise stacking

of rk, sk, ck, and wk for k = 1, 2, ..., Nr . We assume the

received signals at various receivers are statistically indepen-

dent as receivers are widely separated. Furthermore, we con-

sider the Swerling-I model for target return amplitude, i.e.

αk ∼ CN (0, σ2
k) [4]. Let {Mk} denote the covariance ma-

trices of Gaussian random vectors {wk}. Moreover, let us

define Dk , (σ2
c,kaa

H +Mk)
− 1

2 and xk = Dkrk. The opti-

mal detector referring to the above detection problem can be

expressed as [9]

T =

Nr∑

k=1

λk|θk|2
1 + λk

H0

≶
H1

η (8)

where θk , a
H
Dkxk/‖aHDk‖2, and

λk = σ2
ka

H(σ2
c,kaa

H +Mk)
−1

a. (9)

Although closed-form expressions for probability of de-

tection Pd and probability of false alarm Pfa of the optimal

detector can be obtained by applying the results of [4], deriva-

tion of the analytical ROC is not possible. In such cases, one

can resort to information-theoretic criteria. In this paper, we

consider the KL-divergence as the design metric to improve

the detection performance. The KL-divergence D(f0‖f1) is

a metric to measure the “distance” between two pdfs f0 and

f1. For a binary hypothesis testing problem the Stein Lemma

states that [8]

D (f(r|H0)‖f(r|H1)) = lim
N→∞

(−1/N) log(1− Pd)

which implies that the maximization of the KL-divergence

metric leads to an asymptotical maximization of Pd. In ad-

dition, we have that [8]

D(f(r|H0)‖f(r|H1)) = −E {log (L) |H0} (10)

where L is the likelihood ratio defined as L(r) , f(r|H1)
f(r|H0)

.

Using (10) and the identity log (L) = T −∑k log(1 + λk)
[9], the KL-divergence for (7) can be obtained as

D (f(r|H0)‖f(r|H1)) =

Nr∑

k=1

{log(1 + λk)− λk/(1 + λk)}.

2
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Now, let ζ denote the allowed PAR level of the code,

viz. PAR(a) = max
n

{|an|2}/( 1
N
‖a‖22) ≤ ζ. The prob-

lem of PAR-constrained code design by maximizing the KL-

divergence metric can be cast as

max
a,λk

Nr∑

k=1

{log(1 + λk)− λk/(1 + λk)}

subject to λk = σ2
ka

H(σ2
c,kaa

H +Mk)
−1

a (11)

max
n=1,...,N

{|an|2} ≤ ζ (e/N)

‖a‖22 = e,

where e denotes the total transmit energy.

3. THE PROPOSED METHOD

We use the Majorization-Minimization (or Minorization-

Maximization) techniques to tackle the non-convex problem

in (11). Majorization-Minimization (MaMi) is an iterative

technique that can be used for obtaining a locally optimal

solution to the general minimization problem

min
z

f̃(z) subject to c(z) ≤ 0 (12)

where f̃(.) and c(.) are non-convex functions. Each iteration

(say the lth iteration) of MaMi consists of two steps:

• Majorization Step: Finding p(l)(z) such that its minimiza-

tion is simpler than that of f̃(z), and that p(l)(z) majorizes

f̃(z), i.e.

p(l)(z) ≥ f̃(z), ∀z and p(l)(z(l−1)) = f̃(z(l−1)) (13)

with z
(l−1) being the value of z at the (l − 1)th iteration.

• Minimization Step: Solving the optimization problem,

min
z

p(l)(z) subject to c(z) ≤ 0 (14)

to obtain z
(l).

We begin by noting that the convex term g(λk) =
−λk/(1 + λk) can be minorized using its supporting hy-

perplane at any given λk = λ
(l)
k which implies that

Nr∑

k=1

g(λk) ≥
Nr∑

k=1

g(λ
(l)
k ) +

Nr∑

k=1

g′(λ
(l)
k )(λk − λ

(l)
k ). (15)

Herein λ
(l)
k denotes the λk obtained at the lth iteration, and

g′(.) denotes the first-order derivative of g(.). Furthermore,

λk in (9) can be simplified using matrix inversion lemma:

λk = σ2
ka

H

(
M

−1
k − σ2

c,k

M
−1
k aa

H
M

−1
k

1 + σ2
c,ka

HM
−1
k a

)
a

= σ2
k(a

H
M

−1
k a)/(1 + σ2

c,ka
H
M

−1
k a). (16)

Next observe that using (16), the optimal code a = a⋆ can be

obtained in an iterative manner solving the following maxi-

mization at the (l + 1)th iteration:

max
a,λk

Nr∑

k=1

log(1 + λk) + g′
(
λ
(l)
k

)
λk (17)

subject to λk = γk − γk

1 + βkaHM
−1
k a

(18)

max
n=1,...,N

{|an|2} ≤ ζ (e/N) (19)

‖a‖22 = e, (20)

where γk =
σ2
k

σ2
c,k

and βk = σ2
c,k. Substituting {λk} of (18)

into the objective function of (17) leads to the following ex-

pression for the objective function:

∑Nr

k=1

[
log
(
1 + γk − γk

1+βka
HM

−1
k

a

)

+

(
1

1+λ
(l)
k

)2 (
γk

1+βka
HM

−1
k

a

)]
(21)

where λ
(l)
k = γk−γk/(1 + βky

(l)
k ) and y

(l)
k = a

(l)H
M

−1
k a

(l).

In the following, we exploit theorems 3.1 and 4.2 in [10] to

derive a lemma (whose detailed proof is omitted due to the

lack of space) that paves the way for obtaining a minorizer of

the above logarithmic term.

Lemma 1. Let f(x) = − log(1+µ− µ
1+ηx2 ) for some µ, η >

0. Then for all x, x̃ ∈ R we have that

f(x) ≤ f(x̃) +
η

1 + ηx̃2
(x2 − x̃2)

− 2ηx̃(1 + µ)

1 + η(1 + µ)x̃2
(x− x̃) + η(1 + µ)(x− x̃)2.

A minorizer of the logarithmic term can be obtained im-

mediately by employing Lemma 1 with xk =
√

aHM
−1
k a,

µ = γk, and η = βk. To deal with the expression γk

1+βka
HM

−1
k

a

in (21) conveniently, we use the convexity of the function
1

1+βx
for β > 0 which implies

1

1 + βx
≥ 1

1 + βx̃
− β

(1 + βx̃)2
(x− x̃), ∀ x, x̃. (22)

As a result, a minorizer of γk

1+βka
HM

−1
k

a
can be obtained by

considering the above inequality for xk = a
H
M

−1
k a and β =

βk. Furthermore, by replacing the summation terms in (21)

for each k with the obtained minorizers (using Lemma 1 and

eq. (22)) and removing the constants, the criterion in (21)

turns to:

Nr∑

k=1

[
φ
(l)
k a

H
M

−1
k a+ ψ

(l)
k

√
aHM

−1
k a

]
(23)

3
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where

φ
(l)
k , βk

1+βky
(l)
k

+ βk(1 + γk) +
γk

(1+λ
(l)
k

)2

(
βk

(1+βky
(l)
k

)2

)

ψ
(l)
k ,

√
y
(l)
k

(
2βk(1+γk)

1+βky
(l)
k

(1+γk)
+ 2βk(1 + γk)

)
.

Yet, due to the non-concavity of the terms

{√
aHM

−1
k a

}
,

dealing with the maximization of the criterion in (23) appears

to be complicated. However,

√
aHM

−1
k a can be minorized

using its supporting hyperplane at any given ã; more pre-

cisely,

√
aHM

−1
k a ≥

√
ãHM

−1
k ã+Real


 ã

H
M

−1
k√

ãHM
−1
k ã

(a− ã)


 .

(24)

Ultimately, using eq. (23) and (24) as well as removing the

constants, the optimization problem associated with the (l +
1)th iteration will become as follows:

min
a

a
H

(
Nr∑

k=1

φ
(l)
k M

−1
k

)
a− Real

(
Nr∑

k=1

a
H
d
(l)
k

)

subject to max
n=1,...,N

{|an|2} ≤ ζ (e/N) (25)

‖a‖22 = e

where d
(l)
k , (ψl

k/

√
y
(l)
k )M−1

k a
(l). The problem in (25) can

be recast equivalently as

max
a

â
H
K â (26)

subject to max
n=1,··· ,N

{|an|2} ≤ ζ (e/N)

‖a‖22 = e

where â = [a 1]T , K = µIN+1 − J, and

J =




(∑Nr

k=1 φ
(l)
k M

−1
k

)
−0.5

(∑Nr

k=1 d
(l)
k

)

−0.5
(∑Nr

k=1 d
(l)
k

)H
0


 .

Herein, µ > µmax with µmax being the maximum eigenvalue

of the matrix J. The code vector a at the (l+1)th iteration of

MaMi can be obtained from a
(p) (at convergence), using the

power method-like iterations [11]:

max
a(p+1)

‖a(p+1) − ă
(p)‖ (27)

subject to max
n=1,··· ,N

{|a(p+1)
n |2} ≤ ζ(e/N)

‖a(p+1)‖22 = e

where ă(p) represents the vector containing the first N entries

of K â
(p). The optimization problem (27) is a “nearest-

vector” problem with PAR constraint and can be solved

efficiently using a recursive algorithm proposed in [12]: If

the magnitudes of the entries of
√
e ă(p)/‖ă(p)‖2 are below√

ζ(e/N) then a
(p+1) =

√
e ă(p)/‖ă(p)‖2 is the solution.

Otherwise, the entry of a
(p+1) corresponding to the entry

of ă
(p) (say amax) with maximal magnitude is given by√

ζ(e/N) ej arg(amax); and the other entries of a
(p+1) can

be obtained by solving the same type of “nearest-vector”

problem but with the remaining energy i.e. e− ζ(e/N).
Finally, the steps of MaMi algorithm are summarized in

Table 1.

Table 1. The MaMi Algorithm for maximizing the KL-

divergence with a PAR constraint

Step 0: Initialize a with a random vector in CN and set the iteration

number l to 0.

Step 1: Solve the problem in (25) iteratively considering the nearest-

vector problem in (27); set l← l+ 1.

Step 2: Compute φ
(l)
k

and d
(l)
k

.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. ‖a(l+1) − a
(l)‖2 ≤ ξ for some ξ > 0.

4. SIMULATION RESULTS

In this section, we present numerical examples to examine

the performance of the proposed algorithm. In particular, we

compare the system performance for coded and uncoded (em-

ploying the code vector a =
√
e/N 1) scenarios.

In this section, we assume the code length N = 10, the

number of receivers Nr = 4, variances of the target com-

ponents given by σ2
k = 1 (for 1 ≤ k ≤ 4), and variances

of the clutter components given by (σ2
c,1, σ

2
c,2, σ

2
c,3, σ

2
c,4) =

(0.125, 0.25, .5, 1). Furthermore, we assume that the kth in-

terference covariance matrix Mk is given by [Mk]m,n = (1−
0.15k)|m−n|. The ROC is used to evaluate the detection per-

formance of the system using analytical expressions for Pd

and Pfa (see eqs. (32)-(34) in [4]).

Fig. 1 show the ROCs associated with the coded system

(employing the optimized codes) with no PAR constraint and

with PAR = 1 as well as the uncoded system for e = 10.

It can be observed that the performance of the coded system

outperforms that of the uncoded system significantly. Fur-

thermore, a performance degradation is observed for constant

modulus code design as compared to the unconstrained de-

sign. This can be explained using the fact that the feasibility

set of the unconstraint design problem is larger that that of the

constrained design.

The behavior of the KL-divergence criterion versus the

transmit energy e is investigated in Fig. 2 for the coded system

(with no PAR constraint, and PAR = 1) and the uncoded sys-

tem. It is observed that for sufficiently large values of transmit

energy, the performance improvement obtained by increasing

e is negligible (saturation phenomenon). Moreover, a satura-

tion of the coded system always occurs before that in the un-

4
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Fig. 1. ROCs of optimally coded and the uncoded systems.
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Fig. 2. Behavior of KL-divergence versus transmit energy e
for the coded and uncoded systems.

coded system, which was expected: employing an optimized

code enables the system to perform closer to the best possible

performance at lower values of e. An approximate decrease of

16 dB and 14 dB in the required transmit energy of the coded

systems with no PAR constraint and with PAR=1 is observed,

respectively, compared to the uncoded system for D = 2.5.

5. CONCLUSIONS

A multi-static radar code design scheme based on KL-

divergence was considered in the presence of clutter. A novel

method was devised to tackle the highly non-linear and non-

convex design problem using the Majorization-Minimization

(MaMi) technique. MaMi relies on successive (linear as

well as quadratic) majorizations such that each iteration of

the algorithm can be handled using nearest-vector optimiza-

tions. Numerical examples were provided to examine the

effectiveness of the proposed method. The metric’s satura-

tion phenomenon, as the transmit energy increases, was also

investigated.
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