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ABSTRACT

We propose an algorithm to estimate the glucose concentra-

tion from a very small blood sample in a novel hand-held

measurement device. A photometric measurement system is

used whereby a camera is employed to observe the reflectance

behavior of the chemical reaction. The aim is to estimate and

track this behavior in the region of interest. The approach

is based on mode tracking via the adaptive mean-shift al-

gorithm, using both spatial and range information. Finally,

the estimated glucose concentration is associated with the ob-

tained mode. We show that binning the images increases the

mode detection accuracy. Using both synthetic and real data,

we validate the proposed algorithm.

Index Terms— Adaptive mean-shift, blood glucose mea-

surement, segmentation.

1. INTRODUCTION

According to the World Health Organization (WHO) [1],

the burden of diabetes is increasing globally, with 347 mil-

lion diabetics worldwide in 2012. Complications of diabetes

such as blindness and heart diseases can be delayed, or even

prevented by careful monitoring. For this purpose, glucose

biosensors are integrated in hand-held invasive devices that

enable a regular self-monitoring by the patient.

We use devices that operate on a novel photometric mea-

surement principle that uses a much smaller blood sample

than is typical for state of the art devices. Here, the glucose

in the blood sample, which is applied to a chemical test strip,

reacts with the chemical agent, leading to a color change.

This color change is tracked optically and the resulting con-

vergence value is related to the actual glucose concentration.

The optical tracking is performed using a camera that cap-

tures both the regions where the chemical reaction has taken

place and the surrounding areas. Using methods of image

segmentation, we can find the region of interest (ROI) which

contains the reaction between the chemical agent and the

glucose. Then, we estimate the glucose concentration, which

is related to the intensity of the ROI.

In many cases, such as low glucose cases, standard

intensity-based segmentation techniques fail to find the re-

gion of interest reliably, especially if artifacts are present

in the images. Therefore, mean-shift clustering presents a

good solution. It was originally introduced by Fukunaga and

Hostetler in [2]. Recently, it was re-adopted by Cheng [3]

and generalized as a gradient ascent method with adaptive

step size. Comaniciu and Meer applied the mean-shift algo-

rithm [4] to low-level vision problem, such as segmentation.

It has recently become a popular tool for segmentation of

biomedical images [5, 6]. Mean-shift clustering is an unsu-

pervised non-parametric clustering approach that analyzes the

empirical probability density function and locates its modes,

taking into account both intensity-based and spatial informa-

tion in the image. One of its major advantages is that it does

not require an initialization of the number of clusters or their

positions. This characteristic is beneficial for our application

as we want to temporally track images of the chemical reac-

tion, which may lead to the number of clusters changing over

time.

Our contributions lie in proposing an unsupervised mean-

shift based algorithm that reliably estimates the glucose con-

centration, regardless of artifacts corrupting the image. To

our knowledge this paper is the first to tackle the problem

of vision based estimation of blood glucose concentrations.

Furthermore, we show that binning the images prior to seg-

mentation, improves the performance.

The remainder of the paper is organized as follows: Sec-

tion 2 explains the photometric measurement principle. The

mean-shift algorithm is described in Section 3. The proposed

algorithm is presented in Section 4, followed by the descrip-

tion of the data set and the results in Section 5. Finally, a

conclusion is given in Section 6.

2. PHOTOMETRIC MEASUREMENT PRINCIPLE

FOR BLOOD GLUCOMETRY

The photometric measurement principle is a common princi-

ple to measure the concentration of an analyte in a fluid, such
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Fig. 1: An idealized model of the temporal behavior of the

chemical reaction for high and low glucose concentrations.

as the concentration of glucose in a blood sample. It relies on

a chemical reaction between the analyte and a chemical agent

on a test strip that yields a change of color [7]. The test strip is

then illuminated and the reflected light detected, providing in-

formation on the concentration of the analyte. The reflectance

behavior is observed using a camera that produces 30 frames

per second.The amount of reflected light is denoted relative

remissionR and can be directly related to the glucose concen-

tration value, knowing the corresponding mapping function.

A resolution ∆R = 0.1 is needed to differentiate between

two distinct glucose concentration values. To determine the

convergence value of the reaction, the temporal development

of R has to be tracked. It can be, typically, subdivided into

three stages as depicted in Fig. 1.

1. Constant intensity stage where the reaction between the

glucose and the chemical agent has not started.
2. The moistening period starts at t = t0 and is character-

ized by a rapid drop of the intensity value.
3. The convergence stage shows a slow decrease of the in-

tensity, which can be modeled by an exponential decay.

The images, obtained during the first stage, are referred to as

light images and serve as a reference for normalization of all

consequent measurements. A set of so-called dark images is

taken before the test field enters the observation area of the

camera. These are used for calibration.

Fig. 2 shows examples of the observations obtained by the

camera at different stages and for different time instances as

well as their corresponding histograms. Typically, the frames

show a yellow/orange region corresponding to the test strip

on a dark red background. The initial histogram (Fig. 2(d))

obtained at t < t0 can, therefore, be characterized by three

main areas corresponding to the background, the test strip

and the border of the test strip. Fig. 2(b) and (c) exemplify

the observations after convergence (t > tC) for low and high

glucose values, respectively. The high glucose case shows a

much more pronounced color change in the reaction region.

Naturally, the higher the glucose concentration the stronger

is the color change w.r.t. the initial reflectance (cf. Fig. 1).

Also, visible in Fig. 2(b) is that the reaction is confined to

a vertically rectangular shaped region in the middle of the

test strip. The corresponding histograms in Fig. 2(e) and (f)

demonstrate the following: proceeding in time a fourth mode

develops and moves from the high intensity region in the di-

rection of the lower intensity region, with its final mode po-

sition depending on the relative remission value. Appearing

artifacts may lead to further modes developing, so that the ac-

tual mode number is unknown and changes over time. This

behavior motivates the use of the mean-shift algorithm as it

will be explained in the following section.
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Fig. 2: Examples of the chemical reaction observed by the

camera and the corresponding histograms. Figures (a) and

(d) show an example at t < t0, (b) and (c) show observations

of t > tC for low and high glucose values, respectively, (e)

and (f) are the corresponding histograms.

3. MEAN SHIFT ALGORITHM

Given L feature vectors xl, l = 1, . . . , L in a d-dimensional

space Rd, the kernel density estimator at vector x can be de-

fined as [4]

f̂K(x) =
c

L

L∑

l=1

1

hd
k
(∣∣∣
∣∣∣x− xl

h

∣∣∣
∣∣∣
2)

, (1)

where k is the profile of a radially, symmetric kernel function

K(x) such as
K(x) = c · k(‖x‖2). (2)

In (1), c is a constant that ensures that K(x) integrates to

one and h is the so-called kernel bandwidth parameter, which

defines the range of the kernel. We use the following kernel:

K(x) =
1

2π
d

2

e−
‖x‖2

2 . (3)

To find the modes of the empirical probability density func-

tion, the zeros of the gradient need to be found

∇f̂K(x) =
2c

L

L∑

l=1

(x− xl)

hd+2
k′
(∣∣∣
∣∣∣x− xl

h

∣∣∣
∣∣∣
2)

, (4)
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where k′(x) denotes the derivative of the function k(x).
Rewriting (4) in the form

∇f̂K(x) =
2c

L

[
L∑

l=1

1

hd+2
k′
(∣∣∣
∣∣∣x− xl

h

∣∣∣
∣∣∣
2)

]
·mh,k′ (5)

yields the mean-shift vector as

mh,k′(x) =




∑L

l=1

1

hd+2xlk
′

(∣∣∣
∣∣∣x−xl

h

∣∣∣
∣∣∣
2)

∑L

l=1

1

hd+2k′
(∣∣∣
∣∣∣x−xl

h

∣∣∣
∣∣∣
2) − x


 . (6)

The mean-shift vector can be, intuitively, understood as the

difference between the weighted mean and the center of the

kernel x. Due to (4), it always moves in the direction of

the steepest ascent. The step-size of the movement is de-

termined by the magnitude of the mean-shift vector. It is

large for points with low local density and small for points

with high local density. The mean-shift vector reaches con-

vergence when its magnitude becomes zero, indicating a sta-

tionary point.

The mean-shift algorithm iterates through each feature vector

xl in the data set, performing the following steps:

• Calculate the mean-shift vector mh,k′(xj
l ) of current

feature vector x
j
l , where j is the iteration variable.

• Shift the vector x
j
l towardsmh,k′(xj

l ), hereby calculat-

ing the next iteration point x
j+1

l = x
j
l +mh,k′(xj

l ).
• Stop when convergence is reached, i.e. |xj+1

l −x
j
l | < ǫ.

The mean-shift algorithm does not require information about

the clusters, such as their number and positions, which moti-

vates our choice of it. In fact, the only parameter to be set is

the bandwidth parameter h. Choosing a high h leads to peaks

being smoothed out, while choosing a small h leads to an

over representation of the tails of the density. It is, thus, bene-

ficial to use a data-driven bandwidth parameter that adapts to

the current feature vector. We apply the variable bandwidth

parameter suggested by Comaniciu et. al in [8]:

h(x) = h0

[
λ

f̂(x)

] 1
2

. (7)

Here, h0 is an initial fixed bandwidth, λ is the geometricmean

of an initial estimate of the probability density and f̂(x) is an
estimate of the probability of the estimation point x. Hereby,

h(x) becomes larger for points with a low local density and

smaller for points with a high local density.

4. PROPOSED ALGORITHM

The aim of this work is to estimate the relative remission R

from a set of images that describe the reflectance behavior.

For this, we developed an algorithm that is summarized in

Fig. 3. The algorithm is executed for each frame to track the

temporal behavior of the chemical reaction. It will be succes-

sively presented in the next sections.

Find modes using

MeanShift Algorithm
Mode Pruning 

Remove all modes 

with weights < 10%

Take the mode 

with min value

as R estimate 

Variable 

bandwidth 

Range bandwidth

parameter 

Normalize frame

w.r.t. light and dark

frames

Dark and 

light frames

Crop frame

to relevant

area

Intensity threshold

For each 

frame

Bin frame

Binning value

Fig. 3: Flow graph illustrating the proposed algorithm.

4.1. Pre-processing Stage

The pre-processing stage consists of three main steps. The

first step is to crop the images to the area of the chemical test

strip, by removing all pixels lower than a threshold tcrop from

the image. Setting tcrop is straightforward, as the intensity

difference between the background and the test field is large.

Next, a normalization is performed to ensure that no effects

arise from different illumination conditions and to enhance

the region of interest. It is given by

Inorm(m,n) =
Icurrent(m,n)− Idark(m,n)

Ilight(m,n)− Idark(m,n)
, (8)

where m = 1, ...,M, n = 1, ..., N and M and N are the

row and column sizes, respectively. Icurrent(m,n) is the cur-
rent image to be normalized and Inorm(m,n) is the resulting
normalized image. Idark(m,n) is the average of the dark im-

ages mentioned in Section 2 and Ilight(m,n) the average of

the light images. Given a binning value B, the frame is, then,

binned by averaging over areas of size B ×B pixels.

4.2. Mean-Shift Stage

After pre-processing, the mean-shift algorithm is applied to

the images. First, they are vectorized and a set of M · N
feature vectors xl, l = 1, ...,M · N is built. Each feature

vector is 3-dimensional and consists of xl = [Il,ml, nl], Il
being the intensity at point l andml, nl the spatial coordinates

of the image. The kernel we use, thus reads

Khr,hs
(x) =

c

h2
shr

k

(∣∣∣
∣∣∣x

s

hs

∣∣∣
∣∣∣
2
)
· k

(∣∣∣
∣∣∣x

r

hr

∣∣∣
∣∣∣
2
)
, (9)

hr and hs being the range and spatial bandwidth parameters,

respectively and xs and xr the spatial and range components

of the feature vectors. For the range bandwidth parameter hr,

we use the relation of (7) and set h0 according to the plug-in

rule [9]:

h0 = 1.06σ̂L−
1
5 , (10)

where σ̂ is an estimate of the standard deviation of the inten-

sity information. The spatial bandwidth is set to a fixed value

3
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hs, depending on the image size. The convergence constant

is set to ǫ = 0.05, as this is half the needed resolution ∆R

to distinguish between different glucose concentrations. The

mean-shift algorithm results in a set of modes y of sizeM ·N .

4.3. Mode Pruning Stage

As the mean-shift algorithm typically yields more modes than

actually exist, a mode pruning step is required to reduce the

number of modes to the relevant ones. This stage only takes

into account the intensity characteristics of the pixels for clus-

tering. The mode pruning consists of the subsequent steps:

• Initialize the first mode in the vector as the first cluster.

• Iterate through the resulting modes vector y.

• If the next mode is further than h0 (from(10)) to the first

cluster, assign it to be a new cluster. Otherwise, assign

it to an existing cluster and update the cluster.

• Repeat until all points in the vector y have been as-

signed to a cluster.

As a result all modes, which are close to each other, are

grouped together to one cluster, hereby, reducing the amount

of modes considerably.

4.4. Relative Remission Estimation Stage

The output of the mode pruning stage is a set of few modes.

For each of these modes, a weight is assigned depending on

the number of pixels ascribed to this mode. If the weight is

smaller than the threshold tmodes = 0.1, the mode is not con-

sidered as an estimate of the glucose concentration. tmodes was

empirically determined by evaluating typical mode weights

for different regions in the images. We are now, ideally, left

with a set of two modes. These can be associated with the

region of interest and the dry test field area. The mode with

the smaller intensity value is assigned to the region of interest

and is taken to be the estimate of the relative remission R̂, as

it, typically, has a lower intensity value than the dry area.

5. EXPERIMENTAL RESULTS

5.1. Data Set

For testing purposes, we use both real and synthetic data. The

real data set consists of 48 measurements performed using

the system described in Section 2. Whole blood samples

of five different known glucose levels are used: 30 mg/dl,

90 mg/dl, 150 mg/dl, 350 mg/dl, 550 mg/dl. Each measure-

ment contains 605 frames, corresponding to a testing time of

ttest = 20 s. The first five frames are dark frames and the

consecutive 27 frames are light frames. These are used for

normalization, as described in Section 4.1.

The relation between the relative remission value and the

actual glucose concentration is dependent on the chemical

test agent used and was not available to the authors. Con-

sequently, a comparison of the results to a ground truth is

not possible. Therefore, a synthetic data set was developed

by creating a mask from the real data set using a frame at

t = t0. The area of the test strip is modulated with a model

of the chemical reaction, as in Fig.1. Additive 0-mean Gaus-

sian noise with a variance σ2
syn = 81 is added to the frames,

whereby σ2
syn is estimated from the real data samples. The

aim of the synthetic data is to validate the algorithm in an

artifact-free case, knowing the ground truth.

5.2. Results

5.2.1. Validation using the Synthetic Data
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Fig. 4: Relative remission estimates for 20 different glucose

concentrations, performed using synthetic data and compared

to the ground truth, using a binning value of B = 5.

The proposed algorithm is first validated by applying it to

the synthetic data set for 20 different glucose values and 100

runs/glucose value for a binning value of B = 5. Fig. 4 il-

lustrates the behavior of the true and estimated relative remis-

sion for different glucose values. The total mean squared er-

ror (MSE) is 0.001, which results in a smaller resolution∆R

than the one needed to resolve two distinct glucose values.

5.2.2. Validation using the Real Data

The results obtained using the real data are validated, by re-

sorting to three different criteria:

1. the relative remission estimates R̂ for increasing glu-

cose concentrations should be decreasing.

Furthermore, the chemical reaction shows a higher res-

olution for mid field glucose concentrations.
2. the intergroup variance σ2

R̂
for a measurement group of

the same glucose concentration should be small.
3. the temporal behavior of the estimated relative remis-

sion values R̂ should match our knowledge of the tem-

poral behavior as in Fig. 1.

Furthermore, a comparison of the mean shift based algorithm

(MS) is made to the standard intensity-based Gaussian Mix-

ture Model (GMM) - Expectation Maximization (EM) algo-

rithm for segmentation as in [5], using two components. The

4
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Gluc. val.

in mg/dl

# test

images

µ
R̂,MS

σ2

R̂,MS
σ2

R̂,GMM-EM

30 10 94.70 0.71 3.22

90 9 91.36 0.68 16.27

150 9 79.91 0.78 77.95

350 10 67.80 0.94 3.35

550 9 62.15 1.67 1.11

Table 1: Summary of the results with the real data set and a

binning value of B = 5.
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Fig. 5: Estimated temporal behavior of the chemical reaction

for the given real data set.

results are summarized in Table 1. The third column clearly

supports the fact that the mean of the estimated relative remis-

sion valueµ
R̂,MS

within a test group decreaseswith increasing

glucose concentration. Furthermore, the results show a higher

resolution for the mid-field glucose values. Coming to the

second criterion, we assert that the intergroup variance σ2

R̂,MS

is small for all glucose concentrations, especially when com-

pared to the results σ2

R̂,GMM-EM
of the GMM-EM algorithm

initialized with 2 clusters. This underlines the importance of

using an algorithm that does not expect a fixed number of

clusters. The third criterion is consolidated by Fig. 5. The

performance degradation for higher glucose values is due to

the chemical reaction resulting in large granular like artifacts

in the ROI in these cases.

5.2.3. Data Binning

Data binning, as described in section 4.1, is performed for

different binning values B. The results of the synthetic data

set are evaluated in terms of the averaged MSE over tests

with 20 different glucose values and 100 runs/glucose value.

To assess the binning effect on the real data, the mean of

the variances for each separate glucose set is computed. Ta-

ble 2 presents the results, showing that binning improves the

performance. Furthermore, binning reduces the computation

time due to the reduced data volume. We identify the best

binning value to be B = 5. For B > 5, the image structure is

lost, which leads to a degraded performance.

B 1 2 3 4 5 6

σ2
real 16.2 3.73 2.03 1.62 0.96 1.19

MSEsyn 31.22 0.51 0.04 0.08 0.02 0.05

Table 2: Evaluation of different binning valuesB for both the

real and synthetic data.

6. CONCLUSION

We have developed an algorithm to estimate the glucose con-

centration contained in a small blood sample using a photo-

metric measurement principle to be applied in hand-held de-

vices. It is based on adaptive mean-shift clustering, includ-

ing both range and spatial information. We have shown that

by applying the proposed algorithm to binned versions of the

images, the accuracy improves. The validity of the algorithm

was tested using both synthetic and real data and proved a

good performance. We note that it is able to estimate low glu-

cose concentrations more accurately than high glucose con-

centrations. To counter this, a robustification of the algorithm

against artifacts is planned for future work.
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