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ABSTRACT

The problem of synchronization of Doppler-stretched GPS
signals is addressed. A new synchronization technique for the
course acquisition code is proposed, which does not assume
that the so called narrow-band condition is satisfied. Thus,
the Doppler effect is modeled as a frequency shift on the car-
rier and a stretching of the complex envelope. As a conse-
quence, observation intervals significantly longer than those
adopted in conventional techniques can be adopted leading
to a higher immunity against disturbance signals. The pro-
posed technique exploits the cyclostationarity of the received
signal and the fact that transmitted and received signals are
jointly spectrally correlated. Simulation results show the bet-
ter performance of the proposed method with respect to the
conventional technique that models the Doppler effect just as
a frequency shift of the carrier.

Index Terms— Spectrally correlated processes, cyclosta-
tionarity, Doppler effect, synchronization, GPS signal

1. INTRODUCTION

The first step in the acquisition of the global position sys-
tem (GPS) signal requires a search of the periodical course
acquisition (C/A) code that identifies the satellite [6]. At
this step, Doppler effect and phase mismatch (delay) of the
received C/A code and the replica stored in the receiver must
be compensated. For each candidate C/A code, the receiver
correlates the local replica with a delayed and frequency
shifted version of the incoming signal. That is, it computes
the narrow-band cross-ambiguity function (NB-CAF) [15,
Sect. 10.1] of the received signal and the local replica for
delay and frequency shift ranging in predetermined intervals
and with predetermined steps [6, Sect. 5.8].

In the presence of constant relative radial speed between
transmitter and receiver within the observation interval, the
Doppler effect introduces a frequency shift in the carrier of
the received signal with respect to that of the transmitted one
and also introduces a time-scale factor (a time stretch) in the
argument of the complex envelope of the received signal [8,
Sect. 7.3.3], [15, pp. 339-340].

In the described acquisition procedure of the GPS signal,
the Doppler effect is modeled just as a frequency shift of the
carrier and the time-scale factor in the argument of the com-
plex envelope is assumed to be unity. This widely adopted
model for the Doppler effect is valid when the so called
“narrow-band condition” is satisfied, that is, when the prod-
uct of transmitted-signal bandwidth and data-record length is
much smaller than the ratio of the medium propagation speed
and the relative radial speed between transmitter and receiver
[8, Sect. 7.5.1], [15, pp. 339-340]. Under the narrow-band
condition and under the assumption of constant relative radial
speed between transmitter and receiver, locating the peak of
the magnitude of the NB-CAF provides maximum likelihood
(ML) estimates of delay and frequency shift in additive white
Gaussian noise (AWGN) at the high signal-to-noise ratio
(SNR) regime [15, Sects. 9.2, 10.1]. The drawback of this
technique is that it is very time consuming.

If the transmitted-signal bandwidth and a maximum value
for the relative radial speed are fixed, the narrow-band condi-
tion puts an upper bound to the maximum data-record length
that can be adopted in order to effectively model the Doppler
effect as a simple carrier frequency shift. For the GPS-L1 sig-
nal, in order to satisfy the narrow-band condition, the first step
of the C/A code synchronization is made on a single period
of the C/A code, that is, over an observation interval equal to
1 ms [1, Chap. 5, pp. 69-72], [10], [14].

The limit on the data-record length puts a limit to the min-
imum SNR for which satisfactory performance of the syn-
chronization algorithm can be achieved. In order to properly
operate at very low SNR, as in indoor scenarios, the data-
record length needs to be significantly augmented with re-
spect to 1 ms [13]. In such a case, however, the narrow-band
condition is not satisfied, and the non-unit time-scale factor
in the argument of the complex envelope of the received sig-
nal must be accounted for [8, Sect. 7.3.3], [11], [13]. That
is, the received signal is a stretched version of the transmit-
ted one. Consequently, the estimation procedure based on the
NB-CAF performs poorly since of the non accurate model for
the Doppler effect.

In this paper, a new synchronization technique for L1-
GPS signal is proposed, which does not assume the narrow-
band condition be satisfied. Thus, it is suitable to be exploited
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with very large data-record lengths in severe disturbance en-
vironments. The received signal is modeled as an attenu-
ated, time-scaled, delayed, and frequency-shifted replica of
the transmitted one. The proposed method exploits the cyclo-
stationarity property of the transmitted L1-GPS signal [9] to
estimate the time-scale factor and the frequency shift of the
received signal. It is shown that the received signal is still cy-
clostationary but with cyclic features which are different from
those of the transmitted signal. Moreover, transmitted and re-
ceived signals are shown to be not jointly cyclostationary but,
rather, jointly spectrally correlated. (Jointly) spectrally cor-
related processes have a Loève bifrequency (cross-)spectrum
whose spectral masses are concentrated on a countable set of
support curves in the bifrequency plane [8, Chap. 4]. They in-
clude the (jointly) almost-cyclostationary and cyclostationary
processes as special cases when the support curves are lines
with unit slope. A linear time-variant (LTV) equalization of
the received signal is performed to compensate the time-scale
factor and the frequency shift. Then, the delay and phase shift
introduced by the Doppler propagation channel are estimated
starting from the equalized signal and the local replica of the
C/A code stored in the receiver.

Simulation experiments are carried out to show the effec-
tiveness of the proposed method to provide satisfactory per-
formance in severe noise and interference environment where
the 1 ms data-record length is not sufficient to obtain reli-
able estimates by the NB-CAF and, hence, larger data record-
lengths need to be adopted. In the large data-record regime,
the proposed method is shown to outperform the technique
based on the NB-CAF and able to properly counteract the
presence of noise and interference due to the signal selectivity
properties of cyclostationarity.

The paper is organized as follows. In Section 2, the GPS-
L1 signal model is briefly reviewed and its second-order cy-
clostationarity properties presented. The model for the re-
ceived signal is described in Section 3 and the proposed esti-
mation method presented in Section 4. Numerical results are
shown in Section 5 and conclusions are drawn in Section 6.

2. GPS-L1 SIGNAL

The continuous-time GPS-L1 signal [5, Par. 3.2-3.3, pp. 3-
17], [6, Chap. 4, pp. 113-116] is a quadrature phase-shift key-
ing (QPSK) signal

x(t) =
√
2A d(t) c(t) cos(2πfL1t+ ϕ0)

+A d(t) p(t) sin(2πfL1t+ ϕ0) (1)

where fL1 = 1575.42 MHz. In (1):

1) d(t) is the navigation message. It is obtained by inter-
leaving two periodic components and a binary pulse-
amplitude-modulated (PAM) signal with bit period Tb;
the PAM signal is multiplied by a periodic signal [5,
Par. 20.3, pp. 68-122].

2) c(t) is the course acquisition (C/A) code signal. It is the
periodic replication with period TCA = NcTc of a fixed
Gold sequence with chip period Tc and Nc = 1023 chips
that identifies the satellite [5, Par. 3.3, pp. 26-30]. It results
Tc = 0.9775µs, TCA = 1 ms, and Tb = 20NcTc.

3) p(t) is the precision P(Y) code signal. It can be mod-
eled as a binary PAM signal with i.i.d. symbols and bit
period Tp = Tc/10 within realistic observation intervals
[5, Par. 3.3, pp. 18-25].

Due to the presence in x(t) of periodic replication oper-
ations and PAM signals, in [9], it is shown that the complex
signal associated to x(t)

z(t) =
√
2A d(t) c(t) + j A d(t) p(t) (2)

is second-order wide-sense cyclostationary. That is, its ex-
pected value and autocorrelation function are periodic func-
tions of time. The analytical expression of (conjugate) cyclic
autocorrelation functions and (conjugate) cyclic spectra of
z(t) are derived in [9]. These expression are very complicate
due to the complex structure of the GPS-L1 signal (1). In [9],
it is shown that different signal models should be considered
depending on the length T of the observation interval. Con-
sequently, different cyclic features are evidenced depending
on the value of T .

1) Let T = TCA = 1 ms. Assuming that d(t) = 1 and no
data-bit transition is present within the observation inter-
val, the signal model for z(t) is

z(t) =
√
2A c(t)− jA p(t) (3)

where the C/A code signal c(t) must be modeled as a bi-
nary PAM signal with bit period Tc. Thus, c(t) exhibits
cyclostationarity at cycle frequencies α = k/Tc, k inte-
ger, which are pure second-order cycle frequencies [3].
The signal p(t) is a PAM signal with period Tp = Tc/10.
It has cycle frequencies α = k/Tp, k integer, which are a
subset of the cycle frequencies α = k/Tc.

2) Let be T = 20 TCA = Tb = 20 ms. If the observation
interval is such that no data-bit transition is present, then
the model for z(t) is that in (3), where, unlike the case
T = TCA, the signal c(t) must be modeled as the peri-
odic replication with period TCA of a deterministic signal.
The signal exhibit cyclostationarity with cycle frequencies
α = k/Tc = kNc/TCA which, in such a case, are impure
second-order cycle frequencies [3].

Both autocorrelation function and conjugate autocorrela-
tion function are necessary for a complete second-order char-
acterization in the wide sense of complex-valued signals [12].
In the following, notation (∗) will be adopted for an optional
complex conjugation in order to consider, in the same for-
mula, both cyclic statistics and conjugate cyclic statistics.
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3. RECEIVED SIGNAL

In the case of free-space propagation, wide-band transmit-
ting and receiving antennas, and if the relative radial speed
vr between satellite and GPS receiver can be assumed con-
stant within the observation interval, the complex envelope of
the (noise-free) received signal is given by [8, Sect. 7.3.3],
[11], [13]

y(t) = a z(st− d0) e
j2πνt (4)

where, in the case of stationary GPS receiver, s = c/(c+ vr)
is the time-scale factor, ν = (s− 1)fL1 is the frequency shift,
d0 is the time delay, and a = |a|ejϕa is a complex gain that
accounts for propagation losses, phase ϕ0, and phase intro-
duced by the propagation channel. c ≃ 3 · 108 m s−1 is
the medium propagation speed. Note that the parameters ν
and s are linked only if perturbation ionospheric effects and
receiver oscillator instabilities are neglected [11].

For typical values of the elevation and Earth central an-
gles, it can be shown that |1−s| = |vr/(vr+c)| ≃ 2.5 ·10−6.

Assuming for the bandpass GPS-L1 signal an approxi-
mate bandwidth B ≃ 1/Tp = 10.23 MHz, where Tp is the
width of the narrowest rectangular pulse in the signal model,
we have that T = 1 ms ⇒ BT ≃ 10.23 · 103 and T =
10 ms ⇒ BT ≃ 1.02 · 105. Thus, the so called “narrow-
band condition” [8, Sect. 7.5]

BT ≪ 1/|1− s| ≃ c/|vr| (5)

is practically satisfied for T = 1 ms and is not satisfied for
T = 10 ms. When (5) is satisfied, then s = 1 can be assumed
in the argument of the complex envelope z(·) in (4) leading to
the classical model for the Doppler effect.

From (4) it follows that if z(t) exhibits cyclostationarity
with cycle frequency α, then y(t) exhibits cyclostationarity
with cycle frequency sα and the cyclic spectra of y(t) and
z(t) are linked by

Ssα
yy∗(f) = |a|2e−j2παd0

1

|s|
Sα
zz∗

(
f − ν

s

)
. (6)

Moreover, if z(t) exhibits conjugate cyclostationarity with
conjugate cycle frequency β, then y(t) exhibits conjugate cy-
clostationarity with conjugate cycle frequency sβ + 2ν and
the conjugate cyclic spectra of y(t) and z(t) are linked by

Ssβ+2ν
yy (f) = a2 e−j2πβd0

1

|s|
Sβ
zz

(
f − ν

s

)
. (7)

Due to the presence of the non unit time-scale factor s
in (4), it follows that y(t) and z(t) are not jointly almost-
cyclostationary but, rather, jointly spectrally correlated [8,
Chap. 4]. The Loève bifrequency cross-spectrum of y(t) and

z(t) is given by

E
{
Y (f1) Z

(∗)(f2)
}
=

a

|s|
e−j2π(f1−ν)d0/s

∑
αn∈A

zz(∗)

Sαn

zz(∗)

(
f1 − ν

s

)
δ

(
f2 − (−)

(
αn − f1 − ν

s

))
(8)

where (−) is an optional minus sign linked to (∗). That is, it
is constituted by spectral masses concentrated on a countable
set of lines with non unit slope. In (8), Azz(∗) is the set of
(conjugate) cycle frequencies of z, and Y (f) and Z(f) are
the Fourier transforms of y(t) and z(t), respectively, defined
in a distributional sense [4, Chap. 6].

4. PARAMETER ESTIMATION

Let
r(t) = y(t) + n(t) (9)

be the noisy received signal, where n(t) represents a zero-
mean possibly non stationary disturbance signal. Assuming
y(t) and n(t) statistically independent, the (conjugate) cyclic
spectrum of r(t) is given by

Sγ
rr(∗)

(f) = Sγ
yy(∗)(f) + Sγ

nn(∗)(f) . (10)

According to (8), the signals z(t) and y(t) are jointly
spectrally correlated. Their Loève bifrequency cross-spectrum
has spectral masses concentrated on a countable set of lines
with slope −(−)1/s. Since the parameter s is unknown, the
location of the spectral lines is unknown and the correspond-
ing spectral correlation densities can be estimated only with
some uncertainty [7], [8, Sect. 4.5].

In this section, an interference-tolerant technique for es-
timating the parameters s, ν, d0, and a is proposed, which is
based on the cross-correlation between a replica of z(t) stored
in the receiver and a time-stretched version of r(t).

Let α0 and β0 be a cycle frequency and a conjugate cycle
frequency, respectively, of z(t). The parameters s and ν can
be estimated starting from estimates of the (conjugate) cycle
frequencies of the received signal. Let

λrr(∗)(α) ,
∫
R

∣∣∣Ŝα
rr(∗)(f)

∣∣∣2df (11)

where Ŝα
rr(∗)

(f) denotes the (conjugate) frequency-smoothed
cyclic periodogram obtained observing signals in [0, T ].

Let s and ν be such that for some ∆α and ∆β there is only
one cycle frequency of z(t) in the set J(α0,∆α) , [α0 −
∆α/2, α0 + ∆α/2] and only one conjugate cycle frequency
of z(t) in the set J(β0,∆β), and, moreover Sα

nn∗(f) = 0
for α ∈ J(α0,∆α) and Sβ

nn(f) = 0 for β ∈ J(β0,∆β).
In the ideal case of perfect measurements (that is, for infi-
nite data-record length and infinitely small spectral resolu-
tion) we have Ŝα

rr∗(f) = Sα
rr∗(f) and Ŝβ

rr(f) = Sβ
rr(f)

3
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with probability 1 (w.p.1)). Moreover, when α ∈ J(α0,∆α)
and β ∈ J(β0,∆β), accounting for (6) and (7), the statistics
λrr∗(α) and λrr(β) are different from zero w.p.1 only for
α = sα0 and β = sβ0 + 2ν, respectively. Thus, in the case
of finite data-record length and spectral resolution, the fol-
lowing estimates for the cycle frequency α and the conjugate
cycle frequency β can be considered:

α̂ = arg max
γ∈J(α0,∆α)

λrr∗(γ) (12)

β̂ = arg max
γ∈J(β0,∆β)

λrr(γ) . (13)

Then, accounting for (6) and (7), estimates of s and ν can
be obtained by

ŝ =
α̂

α0
ν̂ =

1

2
(β̂ − ŝβ0) . (14)

Once the estimates ŝ and ν̂ are available, a LTV equal-
ization of the signal r(t) can be made in order to compensate
time-scale factor and frequency shift (but not delay and phase)
in y(t). This is obtained by a LTV equalizer with impulse-
response function

hE(t, u) = δ(u− t/ŝ) e−j2πν̂u . (15)

The equalized version of r(t) is

rE(t) =

∫
R
hE(t, u) r(u) du

= a z
(s
ŝ
t− d0

)
ej2π(ν−ν̂)t/ŝ + n(t/ŝ) (16)

The first term in the rhs of (16) is a “good estimate” of
az(t−d0) provided that the following conditions are satisfied

BT ≪
∣∣∣1− s

ŝ

∣∣∣−1 ∣∣∣ν − ν̂

ŝ

∣∣∣T ≪ 1 (17)

where B is the bandwidth of z(t). The first condition in (17)
assures that the time-varying delay introduced by the (approx-
imatively unit) time-scale factor s/ŝ within the observation
interval [0, T ] can be neglected in the argument of z(·). The
second condition in (17) assures that the maximum phase-
change in ej2π(ν−ν̂)t/ŝ is negligible when t ranges in [0, T ].
The equalized signal rE(t) is approximatively jointly cyclo-
stationary with z(t), provided that conditions (17) hold.

The time-delay d0 can be estimated by cross-correlating
rE(t) and a replica of z(t) stored in the receiver. An
interference-tolerant cyclostationarity-based alternative to the
cross-correlation technique is the spectral coherence align-
ment (SPECCOA) method for complex signals [2]. The
estimates of delay d0 and phase ϕa are given by

d̂0 = argmax
τ

|I(τ)| ϕ̂a = ][I(d̂0)] (18)

where ][·] is the argument of a complex number and

I(τ) ,
∫
R
Ŝα0
rEz∗(f) Ŝα0

zz∗(f)∗ ej2πfτdf . (19)

Since the signals of more satellites characterized by dif-
ferent C/A codes are generally present at the receiver input,
the estimation procedure described by (12), (13), and (14)
should be modified as follows. Assuming that a maximum
of n satellites are visible, the n strongest peaks of the func-
tions λrr∗(γ) and λrr(γ) must be located when γ ranges in
J(α0,∆α) and J(β0,∆β), respectively. One obtains n esti-
mates for α̂ and β̂ and consequently n2 pair estimates (ŝ, ν̂).
The association among satellites (i.e., C/A codes) and cor-
responding (ŝ, ν̂) pair can be made choosing, for each local
replica of C/A code, the pair (ŝ, ν̂) that maximizes the value
of the peak of the function |I(τ)| with rE(t) given by (16).

5. NUMERICAL RESULTS

In this section, performance analysis of the parameter estima-
tion procedure described in Section 4 is carried out in terms
of root mean-square error (rmse) of the time-scale, frequency-
shift, delay, and phase estimates for the receiver signal. Re-
sults are compared with those obtained by the NB-CAF.

The received L1-GPS signal is contaminated by circular
AWGN with SNR = 0 dB and by an interfering BPSK signal
with the same carrier frequency of the GPS signal and baud
rate equal to 1/41Ts, where Ts = Tp/4 is the sampling pe-
riod. The signal-to-interference ratio (SIR) is equal to 5 dB.
α0 = β0 = 1/Tc are used in the proposed method.

In Fig. 1, the normalized sample rmse of estimated pa-
rameters as function of the number Nb of processed chips of
the C/A code is reported. In the experiment, 100 Monte Carlo
runs are carried out. For values of Nb such that the narrow-
band condition is satisfied (Nb = 1023), that is, for a data-
record length equal to 1 ms, the proposed method and the NB-
CAF technique have approximatively the same performance
except for the delay, where the NB-CAF technique presents
a smaller rmse. In contrast, when Nb, and hence the integra-
tion time, is increased in order to counteract the effects of the
disturbance signals, the performance of the proposed method
significantly improves while that of the NB-CAF technique
worsens since it is based on the wrong received signal model
(s = 1 in (4)).

6. CONCLUSION

A new synchronization technique for L1-GPS signal is pro-
posed, which does not assume that the so called narrow-band
condition is satisfied. Thus, data-record lengths significantly
larger than those adopted with the classical narrow-band
cross-ambiguity function technique can be adopted. The pro-
posed method exploits the cyclostationarity of the transmitted
and received signals and suitably models the transmitted and
received signals as jointly spectrally correlated. In the large
data-record regime, the proposed method is shown to signif-
icantly outperform the technique based on the narrow-band
cross-ambiguity function in terms of rmse of the estimates.
Moreover, it is shown to properly counteract the presence of
noise and interference.
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(a) (b)

(c) (d)

Fig. 1. Normalized sample rmse of estimated parameters as function of the number Nb of processed chips of the C/A code. ⋆ proposed
method; ▽ NB-CAF method. (a) rmse of ŝ/|s| ; (b) rmse of ν̂Tp; (c) rmse of d̂0/Tp; (d) rmse of ϕ̂a/2π.
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