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ABSTRACT

Among the different configurations of multi-microphone sys-

tems, e.g., in applications of speech dereverberation or denoising,

we consider the case without a priori information of the microphone-

array geometry. This naturally invokes explicit or implicit identifi-

cation of source-receiver transfer functions as an indirect description

of the microphone-array configuration. However, this blind chan-

nel identification (BCI) has been difficult due to the lack of unique

identifiability in the presence of observation noise or near-common

channel zeros. In this paper, we study the implicit BCI performance

of blind signal enhancement techniques such as the adaptive prin-

cipal component analysis (PCA) or the iterative blind equalization

and channel identification (BENCH). To this end, we make use of a

recently proposed metric, the normalized filter-projection misalign-

ment (NFPM), which is tailored for BCI evaluation in ill-conditioned

(e.g., noisy) scenarios. The resulting understanding of implicit BCI

performance can help to judge the behavior of multi-microphone

speech enhancement systems and the suitability of implicit BCI to

serve channel-based (i.e., channel-informed) enhancement.

1. INTRODUCTION

Figure 1 depicts different ways to obtain an enhanced speech sig-

nal ŝ(k) at discrete time k from observed noisy microphone signals

yi(k), i = 1 . . . P . The desired source signal, prior to the acoustic

transmission to the microphones, is denoted s(k). We first look at the

individual building blocks of the figure to briefly describe the context

and some previous work in multi-microphone speech enhancement,

before we outline the particular focus of this paper.

Let us define the class of channel-informed signal estimators

which rely on a generative signal model, i.e., a linear expression of

the observations yi(k) in terms of the source s(k), individual source-

to-microphone acoustic impulse responses (AIRs) hi,k, and obser-

vation noises ni(k). The AIRs are further assumed to be known a

priori. The multiple-input/output inverse theorem (MINT) [1] then

achieves perfect equalization of the acoustic multipath transmission,

subject to the absence of common channel zeros. Numerical robust-

ness and the effect of noise on the equalization were, however, not

addressed in the MINT context. Recent work, e.g. [2], thus renders

a larger picture of channel-informed estimation (i.e., from minimum

mean-square error to least-squares criteria) to take noise into account

and to suggest a least-squares approximation with guaranteed nu-

merical stability. As an alternative to absolute source-to-microphone

transfer functions, it was also proposed to just rely on relative trans-

fer functions (RTFs), e.g., to support adaptive beamforming based

on a generalized sidelobe canceller (GSC) structure [3, 4].

∗This work was partly supported by grant DFG EN 869/1-3

In commonly time-varying acoustic environments, the required

source-to-microphone AIRs or RTFs are not available a priori. As a

direct consequence, the field of BCI, originally known from commu-

nications [5, 6], quickly evolved in the audio and acoustics domain to

resolve this lack of information via estimation on the basis of the ob-

served microphone signals [7]. Especially the adaptive approaches

based on recursive cross-relation-error (CRE) minimization can be

applicable for online AIR inference [8], [9], [10]. However, all previ-

ous work also recognizes that BCI has to be used with caution since

a set of identifiability conditions, e.g., the absence of observation

noise and common channel zeros, are typically not met in acous-

tics. Robust algorithms to overcome the identifiability issues were

proposed, e.g., [11], [12]. Recently, it was proven by theory and

simulation that RTFs can be well estimated by CRE minimization,

despite the violated identifiability conditions [13].

Apart from the two-stage workflow consisting of BCI and

channel-informed signal estimation, the literature offers solutions

for direct or blind signal enhancement. Here, let us refer to the adap-

tive Frost beamformer [14] which uses a constrained least mean-

square (LMS) algorithm to find a minimum-variance distortionless

response (MVDR) solution. Griffiths and Jim then introduced the

aforementioned GSC [15] as an unconstrained adaptive MVDR

implementation. Since those beamformers at least require direction-

of-arrival information, they might still be considered as a variant of

the two-stage approach. A truly blind adaptive beamformer can be

formulated via PCA as shown by the frequency-domain adaptive al-

gorithms in [16, 4]. The structure of these PCA algorithms is closely

related to Oja’s online PCA rule in neural networks [17]. Another

class of blind signal estimators utilizes the expectation-maximization

(EM) framework [18] to iteratively estimate the source signal in con-

junction with latent variables [19, 20, 21].
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Fig. 1. Three ways from a source signal s(k) to its estimate ŝ(k).
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In this paper, we consider the less explored option of obtaining a

blind channel estimate ĥi,k from the algorithms of the direct-signal-

enhancement category. Motivated by the fact that good BCI enables

good channel-informed signal estimation, conversely, we expect a

native blind signal estimator to implicitly perform successful BCI.

Indeed, there is already some evidence for this statement, since Oja’s

early work [22] already highlights a matched-filter characteristic of

the PCA with respect to the unknown channel. Furthermore, the EM-

type BENCH estimators in [20, 21] make explicit use of the acoustic

channel as the latent variable for which the posterior distribution is

obtained in conjunction with the signal estimate. According to [17],

these EM-type adaptive algorithms, based on a generative stochastic

channel model, fall into the class of factor analysis techniques and

thus form at least some structural relationship but also differences

with PCA – see Sec. 2.3. On the other hand, the aforementioned

PCA is well known for its ambiguity due to its direct relationship

with eigenvector analysis. This makes the PCA a questionable tool

to completely solve the BCI task. Our paper therefore applies NFPM

[13] as a relaxed impulse-response-distance to evaluate the implicit

channel estimates obtained from PCA or BENCH. To achieve diver-

sity of the study, we compare the performance of (a) Oja’s classical

online rule, (b) the power iteration for adaptive eigenvector tracking

as used in [4], and (c) the maximum-likelihood BENCH algorithm.

2. SIGNAL MODEL AND ADAPTIVE ALGORITHMS

Figure 2 formally depicts the acoustic transmission from source to

microphones as a SIMO system comprising P acoustic impulse re-

sponses hi,k driven by the common input signal s(k). Considering

the additive observation noises ni(k), the corresponding linear con-

volution model for the i-th microphone signal reads

yi(k) =

L−1∑

κ=0

hi,κ s(k − κ) + ni(k) , i = 1, ..., P , (1)

where L denotes the number of acoustic channel coefficients. In

order to prepare for adaptive signal processing, the most recent sam-

ples of the microphone signals are assembled in length R vectors

yi,k = [yi(k −R+ 1) yi(k −R+ 2) · · · yi(k)]
T
. (2)

Most of the times, we make use of its DFT-domain representation

y
i,τ

= FMQyi,τR at frame time τ , where Q = [0R×L IR ]T is an

M×R zero-padding and FM the size M Fourier matrix, M=L+R.

s(k)

h1,k

h2,k

hP,k

n1(k) n2(k) nP (k)

y1(k)

y2(k)

. . .

. . .

. . .

yP (k)

Fig. 2. P -channel single-input multiple-output (SIMO) system.

2.1. Frequency-Domain Online-PCA Algorithm (Oja)

Let y
i,τ

[m] denote the m-th element (i.e., m-th frequency bin) of the

PCA input y
i,τ

. Since in this section the same operations are carried

out for all frequencies, the frequency bin index [m] will be omitted in

the following. The mathematical formulation of a frequency-domain

PCA then mainly requires the definition of corresponding weights

wi to form a complex-valued linear combination of the multiple mi-

crophone signals [17], independently for each frequency,

ŝ(τ) =
∑

i

w
∗

i yi,τ
= w

H
y
τ
, (3)

where wH = [w∗

1 w∗

2 · · · w∗

P ] and yH

τ
= [y∗

1,τ
y∗

2,τ
· · · y∗

P,τ
]

are length P stacked versions of the bin-wise scalars, and asterisk ∗

denotes complex conjugation.

The value ŝ(τ) is the principal component of y
τ

, if the power of

ŝ(τ) is maximally large. This constitutes one possible definition of

blind signal estimation in Fig. 1. Because ŝ(τ) could grow without

limits if w grows, a unit-norm constraint ||w||2 = wHw = 1 is

further imposed. Formally, the power of ŝ(τ) is given by

σ
2
s = E {ŝ(τ)ŝ∗(τ)} = E

{
w

H
y
τ
y
H

τ
w
}
= w

H
Cyw , (4)

where Cy =E{y
τ
yH

τ
} is known as the data covariance, in general,

or as the power spectral density (PSD) matrix of the microphone

signals here, and E{·} denotes statistical expectation. The maxi-

mization of the output power under the aforementioned constraint is

achieved by unconstrained maximization of the objective function

w
H
Cyw + λ

(
w

H
w − 1

)
, (5)

where λ is a Lagrange multiplier. Equating the complex derivative

w.r.t. w∗ to zero then results in a standard eigenvalue problem, i.e.,

Cyw = λ̃w , (6)

λ̃ = −λ ∈ R, explaining the unavoidable w-ambiguity in PCA up

to an independent complex gain in each frequency bin.

Based on the PCA statement in (3), we can directly apply Oja’s

celebrated online PCA rule to find the eigenvector for the largest

eigenvalue of the matrix Cy as a solution to the constrained op-

timization problem. The literature provides both gradient-ascent

[22, 17] as well as gradient-descent [23] derivations to arrive at Oja’s

LMS-type adaptive algorithm for w-tracking. Oja’s PCA rule ap-

plied to each frequency bin reads

ŵτ+1 = ŵτ + µ
[
y
τ
− ŵτ

̂̂s(τ)
]
̂̂s
∗

(τ) , (7)

where ̂̂s(τ) = ŵ
H
τ y

τ
is a principal component estimate using the

coefficient estimate ŵτ . Unstacking of the vectors finally yields a

channel-wise representation of the algorithm, i.e.,

ŵi,τ+1 = ŵi,τ + µ
[
y
i,τ

− ŵi,τ
̂̂s(τ)

]
̂̂s
∗

(τ) , (8)

which still uses ̂̂s(τ) as a common factor in each frequency bin.

More interpretation follows in conjunction with BENCH in Sec. 2.3.

All frequency-domain coefficients wi and their estimates ŵi,τ

naturally can be translated into a time-domain representation. Sim-

ply define a DFT-domain column vector wi with elements wi[m],
m = 1, ...,M , corresponding to the individual frequency bins. Its

counterpart in the time domain is then given by wi = F−1
M wi and

analogously ŵi=F−1
M ŵi. This transformation into the time-domain

is useful, on the one hand, to arrive at a linear filtering interpretation

of the frequency-domain PCA statement and, on the other hand, to

enable a comparison – see Sec. 3 – of estimated filter impulse re-

sponses ŵτ with the original acoustic channels hi,k.

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2.2. Power-Iteration for Adaptive Eigenvector Tracking

Another approach to solve the eigenvalue problem in (6) is known as

the power iteration [24]. In the context here, it relies on a recursive

estimate Ĉy,τ of the PSD matrix Cy , i.e.,

Ĉy,τ = αĈy,τ−1 + (1− α)y
τ
y
H

τ
(9)

in each frequency bin with a smoothing factor 0 < α < 1. The

actual iteration for eigenvector estimation at time τ is started with

an estimate ŵτ,old and then uses the structure of (6) to update it as

ŵτ,new = Ĉy,τ ŵτ,old , (10)

where the norm of ŵτ,new is adjusted to unity after each iteration.

Fast convergence of the power iteration was reported for large

eigenvalue spread of the data covariance, e.g., with a near rank-one

matrix Cy in case of a strong direct acoustic path to the microphones

[4]. In particular, it converges faster than the covariance recursion in

(9). As a result, the iteration can be started with ŵτ,old = ŵτ−1,new

and one iteration per time instant τ was found to be sufficient [4].

While our statements here implied uncorrelated observation noise at

the microphones, [4] also presented generalized eigenvector tracking

with the help of an additional noise PSD matrix.

2.3. Model-Based ML-BENCH Adaptive Algorithm

The ML-BENCH algorithm [20] is supported by a generative model

yi,τR = Q
T
F

−1
M Hisτ + ni,τR (11)

for our length R vectors yi,τR of observed microphone signals. This

frame-based model represents the strictly linear acoustic channels

from Fig. 2 via overlap-save convolution [25]. To this end, a DFT-

domain version sτ = FMsτR of a length M source vector

sk = [ s(k−M+1) s(k−M+2) . . . s(k) ]T (12)

is employed and linked here with diagonal matrices Hi=diag{hi}
that comprise the zero-padded acoustic channels in the DFT-domain,

i.e., hi = FM

[
hT
i 0T

R×1

]T
and hi = [hi,0 hi,1 · · · hi,L−1]

T .

The term QTF−1
M then achieves linearization of the cyclic convolu-

tion by projection into the time-domain and appropriate selection of

samples. Neither Hi nor sτ are known a priori.

According to the EM algorithm [18, 26], the unknown acous-

tic channel can be modeled as a hidden state variable of the system

and a maximum-likelihood (ML) estimation of the source signal can

be achieved by utilizing the expectation of the log-likelihood of the

complete data (observations + hidden variables), i.e.,

Q
(
sτ , sτ,old

)
= E{ln p(y

τ
,h| sτ )}qold(h) , (13)

where hT = [hT
1 hT

2 · · · hT
P ] and yT

τ
= [yT

1,τ
yT

2,τ
· · · yT

P,τ
],

for maximization in the M-step instead of the likelihood p(y
τ
| sτ ).

In doing so, the expectation is w.r.t. the joint state posterior (all i)

q
old(h) = p(h| y

τ
, sτ,old) = N (ŵ,P) (14)

that relies on a previous signal estimate sτ,old and all current obser-

vations y
τ

. Assuming Gaussian observation noise in writing out the

Q-function and by equating its complex derivative w.r.t. s∗τ to zero,

the multi-microphone ML estimate of the source signal is found in

this maximization-step (M-step) as [20]

ŝτ,new =

[
∑

i

(
Ŵ

H

i Ŵi +Pi

)]−1 ∑

i

Ŵ
H

i y
i
, (15)

where Ŵi = diag {ŵi} and Pi signify means and covariances of

individual channel posteriors p(hi| yi,τ
, sτ,old) at time τ .

At this point, those acoustic-channel posteriors still have to be

determined in the expectation-step (E-step). To this end, consider an

equivalent representation of the observation model in (11), i.e.,

yi,τR = Q
T
F

−1
M Sτhi + ni,τR , (16)

where Sτ = diag {sτ}. Then augment a first-order Markov model

to describe a slow variability of the acoustic channels hi, i.e.,

hi,τ = A · hi,τ−1 +∆hi,τ , (17)

where 0 < A < 1 denotes the state-transition coefficient and ∆hi,τ

is a zero-mean and frame-wise uncorrelated Gaussian process noise

vector with diagonal covariance Ψ∆
i = E

{
∆hi,τ∆hH

i,τ

}
. Based

on the dynamical model in (16) and (17), the posterior qold(hi,τ ) =
p(hi,τ | yi,τ

, sτ,old) can be learned efficiently via the Kalman filter.

In particular, we make use of a stable implementation in form of the

state-space frequency-domain adaptive filter (SSFDAF) [27, 28] to

denote our E-step for the i-th channel:

ŵ
+
i,τ−1 = A · ŵi,τ−1 (18)

P
+
i,τ−1 = A

2 ·Pi,τ−1 +Ψ
∆
i (19)

µ
i,τ

= P
+
i,τ−1

[
Ŝτ,oldP

+
i,τ−1Ŝ

H

τ,old +
M

R
Ψ

n

i

]
−1

(20)

ei,τ = y
i,τ

− FMQQ
T
F

−1
M Ŝτ,old ŵ

+
i,τ−1 (21)

ŵi,τ = ŵ
+
i,τ−1 + µ

i,τ
Ŝ
H

τ,old ei,τ (22)

Pi,τ =

[
IM −

R

M
µ

i,τ
Ŝ
H

τ,old Ŝτ,old

]
P

+
i,τ−1 , (23)

where µ
i,τ

, ei,τ , and Pi,τ are the time-varying Kalman stepsize,

the error signal, and the state-error covariance, respectively. The

superscript + denotes prediction terms and Ψn

i = E
{
ni,τn

H
i,τ

}

is the diagonal covariance of zero-mean and normally distributed

observation noise in the DFT domain.

In order to start the EM iteration of the channel-wise Kalman

filters (18)-(23) and the multi-channel ML estimator (15), simply let

Ŝτ,old =diag{ŝτ,old}=diag{ŝτ−1,new}, i.e., utilize the estimated

source signal obtained from (15) at the previous time instant τ−1.

According to our observations, it is then sufficient to apply just one

iteration of E- and M-step per time τ .

Looking back at Fig. 1, ML-BENCH can be seen as a native

blind signal enhancer, centered in (15) and receiving acoustic chan-

nel estimation support via (18)-(23), but also as a blind recursive

Bayesian channel estimator, centered in the Kalman filter recursions

(18)-(23) and relying on source signal estimation via (15). The

usually difficult blind equalization and identification tasks are thus

solved iteratively (i.e., jointly) to the advantage of each other.

Regarding the relationship with PCA, it can be seen that the

equalizer in (15) implies the PCA statement as shown by (3)

and used in (7). The additional inverse part in (15) represents a

frequency-dependent normalization (or single-channel correction)

of the multi-channel PCA part. Furthermore, the channel update in

(22) resembles the basic online PCA recursion in (7) with additional

optimum stepsize µ
i,τ

and with overlap-save constraining in the

calculation of the error signal ei,τ . Still, the model-based inference

via ML-BENCH differs significantly from PCA, i.e., ML-BENCH

rather falls into the class of factor analysis techniques, cf., e.g., [17].
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3. EXPERIMENTAL RESULTS

3.1. Normalized Filter-Projection Misalignment (NFPM)

The NFPM is a multichannel Euclidean distance between estimated

impulse responses ŵT = [ ŵT
1 ŵT

2 . . . ŵT
P ] and true impulse

response coefficients in HT = [HT
1 HT

2 . . . HT
P ], where

Hi =




hi,0 0 · · · · · · · · · 0
hi,1 hi,0 · · · · · · · · · 0

...
...

. . .
. . .

...
...

0 · · · · · · · · · hi,L−1 hi,L−2

0 · · · · · · · · · 0 hi,L−1 .




(24)

is a linear convolution matrix. The NFPM [13] in particular applies

the same (i.e., common) correction filter f = [ f0 f1 . . . f2Df
]T to

all channels to effectively minimize the distance between h̃ = Hf

and a zero-padded estimate ŵT
z = [ ŵT

1,z ŵ
T
2,z . . . ŵT

P,z ], e.g.,

ŵi,z =
[
0 . . . 0︸ ︷︷ ︸

Df

ŵ
T
i 0 . . . 0︸ ︷︷ ︸

Df

]T
. (25)

The least-squares NFPM solution over all possible correction filters

f is then given by [13]

NFPM(h, ŵ) = min
f

∥∥ŵz − h̃
∥∥2

∥∥ŵz

∥∥2 =

∥∥ŵz −H (HTH)−1HT ŵz

∥∥2

∥∥ŵz

∥∥2 .

It evaluates how accurate P channel impulse responses are identified

by an algorithm – up to a common filter error f , which is absorbed

by the measure – or, in other words, how accurate relative impulse

responses are found. NFPM was developed and well-justified in the

context of explicit CRE-based BCI. It is used here intuitively to eval-

uate implicit BCI of the described signal enhancement techniques.

3.2. Experimental Configuration

In our simulations, we use room impulse responses that were gen-

erated with the image method [29] for a single source and a linear

array with P = 10 microphones inside a room with dimensions 7 m

× 5 m × 4 m (x × y × z) and a reverberation time T60 = 0.2 s.

The source was positioned at (5 m, 1.5 m, 1.5 m), the first array

microphone was located at (2 m, 4 m, 1.5 m), whereas all other mi-

crophones were placed at distances of 0.1 m in positive x-direction

from the first microphone. In order to simulate realistic conditions,

we selected a long filter length of 3200 coefficients at a sampling

rate of fs = 16 kHz. The microphone signals were then obtained

by convolving sentences from 10 different speakers with each im-

pulse response before adding zero-mean white observation noise at

different signal-to-noise ratios (SNR).

3.3. Results

Figures 3 to 5 depict the NFPM corresponding to the described

algorithms as a function of time. The NFPM calculation uses time-

domain coefficients ŵi,τ = F−1
M ŵi,τ for comparison with the

acoustic impulse responses hi = [hi,0 hi,1 · · · hi,L−1]
T . Oja’s

gradient descent rule obviously converges slowly to the common-

filter compensated ground-truth h̃ = Hf , which is plausible for this

LMS-type algorithm. ML-BENCH (A=0.9997) and power iteration

(α = 0.95) converge much faster, with advantages for the power

iteration at low SNR=10 dB, for ML-BENCH at high SNR=50 dB,

and with a tie at moderate SNR= 30 dB. The common saturation of

NFPM is due to finite length Df =L of the FIR correction f [13]. In

an absolute sense, the fast algorithms converge within a few seconds

despite the long AIRs used here. This result is very uncommon,

since BCI has been applied for the identification of much shorter

impulse responses in most of the previous work, e.g., [7, 9].
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Fig. 3. NFPM comparison of BCI performance at SNR=10 dB.
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Fig. 4. NFPM comparison of BCI performance at SNR=30 dB.
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Fig. 5. NFPM comparison of BCI performance at SNR=50 dB.
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4. CONCLUSIONS

It was demonstrated that blind signal enhancement techniques can

successfully perform BCI in realistic acoustic conditions, up to the

truly ill-conditioned part of the problem. Interestingly, the perfor-

mances of the fast PCA version, i.e., using the power iteration, and

the BENCH algorithm are very similar despite their structural dif-

ferences. The power iteration processes the pair-wise dependencies

of all microphones via the PSD matrix. Its formal simplicity seems

to be attractive, but the operations related to all frequency bins will

accumulate computational load. Implementation of the BENCH al-

gorithm will exhibit higher code complexity due to its richer mathe-

matical structure. However, its inherent source signal estimate prac-

tically enables a channel-wise and quasi-supervised system identifi-

cation with possible advantages in terms of computational load.
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