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ABSTRACT
We present a modulation-domain speech enhancement al-
gorithm based on a subspace method. We demonstrate that in
the modulation domain, the covariance matrix of clean speech
is rank deficient. We also derive a closed-form expression for
the modulation-domain covariance matrix of colored noise
in each frequency bin that depends on the analysis window
shape and the noise power spectral density. Using this, we
combine a noise power spectral density estimator with an
efficient subspace method using a time domain constrained
(TDC) estimator of the clean speech spectral envelope. The
performance of the novel enhancement algorithm is evaluated
using the PESQ measure and shown to outperform competit-
ive algorithms for colored noise.

Index Terms- speech enhancement, subspace, modula-
tion domain, covariance matrix estimation

1. INTRODUCTION

With the increasing use of hands-free telephony, especially
within cars, it is often the case that speech signals are con-
taminated by the addition of unwanted background acoustic
noise. The goal of a speech enhancement algorithm is to re-
duce or eliminate this background noise without distorting
the speech signal. Over the past several decades, numerous
speech enhancement algorithms have been proposed includ-
ing a class of algorithms, introduced in [1], in which the space
of noisy speech vectors is decomposed into a signal subspace
containing both speech and noise and a noise subspace con-
taining only noise. The clean speech is estimated by project-
ing the noisy speech vectors onto the signal subspace using
a linear estimator that minimizes the speech signal distor-
tion while applying either a time domain constraint (TDC)
or spectral domain constraint (SDC) to the residual noise en-
ergy. The enhancer in [1], which assumed white or whitened
noise, was extended to cope with colored noise in [2]. Differ-
ent decompositions were applied in [3] to speech-dominated
and noise-dominated frames since the latter do not require
prewhitening. In a generalization of the approach, [4] apply
a non-unitary transformation to the noisy speech vectors that
simultaneously diagonalizes the covariance matrices of both
speech and colored noise.

There is increasing evidence that information in speech is
carried by the modulation of the spectral envelopes rather than
by the envelopes themselves [5, 6, 7]. Consequently several
recently proposed enhancers act in the short-time modulation
domain using minimum mean-square error (MMSE) estima-
tion [8], spectral subtraction [9] or Kalman filtering [10, 11].

This paper extends the subspace enhancement approach
to the modulation domain and shows that, in this domain, the
normalized noise covariance matrix can be taken to be fixed.
The remainder of this paper is organized as follows. In Sec. 2
the principle of enhancement in the short-time modulation do-
main is described and in Sec. 3 we derive the noise covariance
matrix estimate in this domain. Finally in Sec. 4 and Sec. 5
we evaluate the algorithm and give our conclusions.

2. SUBSPACE METHOD IN THE SHORT-TIME
MODULATION DOMAIN

The block diagram of the proposed modulation-domain sub-
space enhancer is shown in Fig. 2. The noisy speech y(r)

is first transformed into the acoustic domain using a short-
time Fourier transform (STFT) to obtain a sequence of spec-
tral envelopes Y (n, k)e

j✓(n,k) where Y (n, k) is the spectral
amplitude of frequency bin k in frame n. The sequence
Y (n, k) is now divided into overlapping windowed modu-
lation frames of length L with a frame increment J giving
Yl(n, k) = p(n)Y (lJ + n, k) for n = 0, · · · , L � 1 where
p(n) is a Hamming window. A TDC subspace enhancer
is applied independently to each frequency bin within each
modulation frame to obtain the estimated clean speech spec-
tral amplitudes b

Sl(n, k) in frame l. The modulation frames
are combined using overlap-addition to obtain the estim-
ated clean speech envelope sequence b

S(n, k) and these are
then combined with the noisy speech phases ✓(n, k) and an
inverse STFT (ISTFT) applied to give the estimated clean
speech signal ŝ(r).

Following [12, 10] we assume a linear model in the spec-
tral amplitude domain

Yl(n, k) = Sl(n, k) +Wl(n, k) (1)

where S and W denote the spectral amplitudes of clean
speech and noise respectively. Since each frequency bin is
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Fig. 1. Mean eigenvalues of covariance matrix of clean
speech.

processed independently, we will omit the frequency index,
k, in the remainder of this section. We define the noisy speech
vector yl =

⇥
Yl(0) · · · Yl(L� 1)

⇤T and similarly for
sl and wl. The key assumption underlying the subspace
enhancement method is that the covariance matrix of the
clean speech vector, sl, is rank-deficient. To illustrate the
validity of this, we show in Fig. 1 the ordered eigenvalues
of the modulation domain speech vector covariance matrix
of speech vector, RS =

⌦
sls

T
l

↵
, averaged over the TIMIT

core test set using the framing parameters defined in Sec. 4.1
with a modulation frame length L = 32, where h. . .i denotes
the expected value. We see that the eigenvalues decrease
rapidly and that 97% of the speech energy is included in the
first 10 eigenvalues. We note that this low-rank assumption
is also implicit in the use of a low-order LPC model in the
modulation domain in [13, 11].

If RY and RW are defined similarly to RS , we can, if we
know RW , perform the eigen-decomposition

R
� 1

2
W RY R

� 1
2

W = R
� 1

2
W RSR

� 1
2

W + I = UDUT (2)

where R
1
2
W is the positive definite square root of RW . From

this we can estimate the whitened clean speech eigenvalues as

⇤ = max(D� I, 0) (3)

We will estimate the clean speech vector from the noisy
vector using a linear estimator, Hl, as

ŝl = Hlyl (4)

It is shown in [2] that the optimal TDC linear estimator is
given by

Hl = R
1
2
WU⇤(⇤+ µI)�1UTR

� 1
2

W (5)

where µ controls the tradeoff between speech distortion and
noise suppression.

noisy speech 
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Fig. 2. Diagram of proposed short-time modulation domain
subspace enhancer.

We can interpret the action of the estimator in (5) as first
whitening the noise with R

� 1
2

W and then applying a Karhunen-
Loève transform (KLT), UT to perform the subspace decom-
position. In the transform domain, the gain matrix, ⇤(⇤ +

µI)�1, projects the vector into the signal subspace and at-
tenuates the noise by a factor controlled by µ, discussed in
Sec. 4.1. A detailed derivation of (5) is given in [1] and [2].

3. NOISE COVARIANCE MATRIX ESTIMATION

We now consider the estimation of the noise covariance mat-
rix RW . For quasi-stationary noise, RW will be a symmetric
Toeplitz matrix whose first column is given by the autocorrel-
ation vector a(k) =

⇥
a(0, k) · · · a(L� 1, k)

⇤T where
a(⌧, k) = hW (n, k)W (n+ ⌧, k)i. We begin by determining
a(⌧, k) for the case when w(r) is white noise and then extend
this to colored noise.

First suppose w(r) s N(0, ⌫

2
) is a zero-mean Gaussian

white noise signal. If the acoustic frame length is R samples
with a frame increment of M samples, the output of the initial
STFT stage in Fig. 2 is

f
W (n, k) =

R�1X

r=0

w(nM + r)q(r)e

�2⇡j rk
R (6)

where q(r) is the window function and the complex spectral
coefficients, f

W (n, k), have a zero-mean complex Gaussian
distribution [14]. The expectation

D
f
W (n, k)

f
W (n+ ⌧, k)

⇤
E

,
where ⇤ denotes complex conjugation, is given by

D
fW (n, k)fW (n+ ⌧, k)⇤

E

=

*
R�1X

r,s=0

w(nM + r)q(r)w(nM + s+ ⌧M)q(s)e�2⇡j
(r�s)k

R

+

= ⌫2
R�1X

r=0

q(r)q(r � ⌧M)e�2⇡j ⌧Mk
R (7)

since, for white noise,

hw(nM + r)w(nM + s+ ⌧M)i = ⌫

2
� (r � s� ⌧M) .
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By setting ⌧ = 0, we can therefore obtain the spectral power
in any frequency bin as

�

2
=

⌧���fW (n, k)

���
2
�

= ⌫

2
R�1X

r=0

q

2
(r) (8)

Defining

⇢(⌧, k) =

PR�1
r=0 q(r)q(r � ⌧M)e

�2⇡j ⌧Mk
R

PR�1
r=0 q

2
(r)

we can now use (7) and (8) to write
D
f
W (n, k)

f
W (n+ ⌧, k)

⇤
E
= �

2
⇢(⌧, k)

where ⇢(⌧, k) depends on the window, q(r), but not on the
noise variance ⌫

2.
We now have obtained the autocorrelation sequence of

the short-time Fourier coefficients
D
f
W (n, k)

f
W (n+ ⌧, k)

⇤
E
,

from [15, pp. 95-97] we can further obtain the autocorrelation
sequence of their magnitudes as

a(⌧, k) = hW (n, k)W (n+ ⌧, k)i

=

D���fW (n, k)

���
���fW (n+ ⌧, k)

���
E

=

⇡

4

�

2 ⇥ 2F1(�
1

2

,�1

2

, 1; |⇢(⌧, k)|2) (9)

where 2F1 (· · · ) is the hypergeometric function [16] defined
by

2F1(m,n, o; z) =

1X

k=0

(m)k(n)k

(o)k

z

k

k!

(10)

where (m)k =

1
m+k

k+1Q
r=1

(m+r�1) is the rising Pochhammer

symbol.
Therefore, if we define

a0(k) = �

�2
⇥
a(0, k) · · · a(L� 1, k)

⇤T

and R0(k) is a symmetric Toeplitz matrix with a0(k) is the
first column, we can write

RW (k) = �

2R0(k) (11)

where R0(k) does not depend on �

2.
If we now assume that w(r) is quasi-stationary colored

noise with a correlation time that is small compared with the
acoustic frame length, fW (n + ⌧, k) will be multiplied by a
factor that depends on k but not on ⌧ [17]. In this case, the
previous analysis still applies but, for frame l, (11) now be-
comes

RW (k) = �

2
l (k)R0(k) (12)
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Fig. 3. Estimated and true value of the average autocorrela-
tion sequence in one modulation frame.

where �2
l (k) =

⌦
W

2
(lJ, k)

↵
is the noise periodogram and, as

shown above, R0(k) is independent of the noise power spec-
trum. This means that we are able to estimate RW (k) dir-
ectly from an estimate of �2

l (k) which can be obtained from
the noisy speech signal, y(r), using a noise power spectrum
estimator such as [18] or [19].

Substituting (12) into (2)-(5), we obtain

R
� 1

2
0 RY R

� 1
2

0 = UDUT

⇤ = max(D� �

2
l (k)I, 0)

Hl = R
1
2
0 U⇤(⇤+ µ�

2
l (k)I)

�1UTR
� 1

2
0

in which the whitening transformation, R� 1
2

0 , can be precom-
puted since it depends only on the window, h(r), and is in-
dependent of the noise power spectrum. In addition, because
the matrix (⇤+ µ�

2
l (k)I) is a diagonal matrix whose inverse

is straightforward to calculate, the computational complexity
of the estimator is greatly reduced.

To confirm the validity of the analysis we have evalu-
ated the autocorrelation vector, a, for the ‘f16’ noise in the
RSG-10 database [20] using the framing parameters given in
Sec. 4.1 with a modulation frame length L = 32. Figure 3
shows the true autocorrelation averaged over all k together
with the autocorrelation from (9) using the true noise period-
ogram. We see that the two curves match very closely and that
for ⌧ � R

J = 4, the STFT analysis windows do not overlap
and so a(⌧, k) is constant.

4. EXPERIMENTAL RESULTS

4.1. Implementation and Stimuli

In this section, we compare our proposed modulation domain
subspace (MDSS) enhancer with the TDC version of the
time-domain subspace (TDSS) enhancer1 from [4] and the

1The Matlab implementation can be found in [21]
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Fig. 4. Average PESQ values comparing different algorithms,
where speech signals are corrupted by white noise at different
SNR levels.

modulation-domain spectral subtraction (MDST) enhancer2

from [9] using the default parameters. In our experiments,
we used the core test set from the TIMIT database [22] which
contains 16 male and 8 female speakers each reading 8 dis-
tinct sentences (totalling 192 sentences) corrupted by ‘white’,
‘factory2’ and ‘babble’ noise from [20] at �5, 0, 5, 10, 15 and
20 dB signal-to-noise ratio (SNR). The algorithm parameters
were determined by optimizing performance on a subset of
the TIMIT training set. All speech and noise signals were
downsampled to 8 kHz. The estimator in (5) was used to
process each modulation frame of length 128ms with 16ms
increment and the acoustic frames are 16ms long with 4ms
increment (L = 32, J = 4, R = 128, M = 32). A Hamming
window is applied for analysis and synthesis in both acous-
tic domain and modulation domain. Additionally, the noise
power spectrum was estimated using the algorithm in [19, 23]
and, following [4], the factor µ in (5) was selected as

µ =

8
><

>:

5 SNRdB  �5

µ0 � (SNRdB)/s �5 < SNRdB < 20

1 SNRdB � 20

where µ0 = 4.2, s = 6.25, SNRdB = 10log10(tr(⇤)/L).
To avoid any of the estimated spectral amplitudes in ŝl

becoming negative, we set a floor equal to 20 dB below the
corresponding noisy spectral amplitudes in yl so that (4) now
becomes

ŝl = max(Hlyl, 0.1yl) (13)

4.2. Experimental results

The performance of the three speech enhancers are evaluated
and compared using the perceptual evaluation of speech qual-
ity (PESQ) measure defined in ITU-T P.862, averaged over

2The Matlab software is available online at url:
http://maxwell.me.gu.edu.au/spl/research/modspecsub/
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Fig. 5. Average PESQ values comparing different algorithms,
where speech signals are corrupted by factory noise at differ-
ent SNR levels.
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Fig. 6. Average PESQ values comparing different algorithms,
where speech signals are corrupted by babble noise at differ-
ent SNR levels.

the 192 sentences in the core TIMIT test set. The experi-
mental results are shown in Fig. 4 to Fig. 6, for noisy speech
corrupted by white noise, factory noise and babble noise re-
spectively at different global SNRs, and the corresponding en-
hanced speech by the three enhancers mentioned above. We
can see that, for colored noise, the proposed MDSS enhan-
cer performs better than the other two enhancers, especially
at low SNRs which gives a PESQ improvement of more than
0.2 over a wide range of SNRs. For white noise, the TDSS en-
hancer is better than the MDSS enhancer except at very low
SNRs.

5. CONCLUSIONS

In this paper we have presented a speech enhancement al-
gorithm using a subspace decomposition technique in the
short-time modulation domain. We have derived a closed-
form expression for the modulation-domain covariance mat-
rix of quasi-stationary colored noise that depends on the
STFT analysis window and the noise power spectral density.
We have evaluated the performance of our proposed enhancer
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using PESQ and shown that, for colored noise, it outperforms
a time-domain subspace enhancer and modulation-domain
spectral-subtraction enhancer.
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