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ABSTRACT

This paper addresses the problem of fetal electrocardiogram

(ECG) extraction from multichannel recordings. The pro-

posed two-step method, which is applicable to as few as two

channels, relies on (i) a deterministic tensor decomposition

approach, (ii) a Kalman filtering. Tensor decomposition cri-

teria that are robust to outliers are proposed and used to better

track weak traces of the fetal ECG. Then, the state parameters

used within an extended realistic nonlinear dynamic model

for extraction of N ECGs from M mixtures of several ECGs

and noise are estimated from the loading matrices provided by

the first step. Application of the proposed method on actual

data shows its significantly superior performance in compari-

son to the classic methods.

Index Terms— fetal ECG extraction, underdetermined

source separation, robust tensor decomposition, extended

Kalman filtering, nonlinear Bayesian filtering.

1. INTRODUCTION

The fetal electrocardiogram (fECG) may provide useful infor-

mation about the fetus’ heart condition for detecting the fetus

at risk of damage or death in the uterus. However, extraction

of the fECG signal from the mixture of maternal electrocar-

diogram (mECG) and fECG signals, and other interference

sources remains a difficult problem for the biomedical engi-

neering community. This is due to much lower amplitude of

fECG compared with mECG.

Among several methods in the literature for multichannel

fECG extraction, one can name blind source separation [1],

semi-blind source separation [2], adaptive filtering [3, 4], and

periodic component analysis (πCA) [5]. All these methods

exploit the redundancy of the multichannel ECG recordings

to reduce mECG and other interference sources. Neverthe-

less, even if this reduction has been successful, the exogenous

noise cannot be totally canceled in this way [6]. Moreover,

they demand several channels to recover weak traces of fetal

signal.

On the other hand, one can extract the fECG using a single

sensor by singular value decomposition (SVD) [7] or by non-

linear decomposition such as shrinkage wavelet denoising [8]

or nonlinear projections [6].

In this paper, the tensor based parallel deflation proce-

dure [9], which can be seen as an extension of the SVD

method proposed in [7], is modified to tackle the fECG ex-

traction by proposing criteria that are robust to outliers. Then,

the fECG and mECG estimates are improved by a Kalman fil-

tering, whose state parameters are obtained from the loading

matrices of the tensor decomposition. The proposed method

is applicable to as few as two channels.

The rest of the paper is organized as follows. In section 2

equations and theories supporting our proposed method are

described. In section 3 results of the proposed method ap-

plied on two sets of data and discussion about the results are

presented. Finally, our conclusion is stated in section 4.

2. METHODS

The proposed method is based on two steps: (i) a robust ten-

sor decomposition (subsection 2.1) and (ii) a refined Kalman

filtering (subsection 2.2).

2.1. Robust tensor decomposition: deterministic source
extraction

The deterministic blind separation of sources having different

symbol rates, proposed in [9] has been adopted and modified

in this study for fetal ECG extraction. This method, which

is also applicable to underdetermined mixtures (i.e. more

sources than sensors), assumes that each of the n = 1, . . . , N
sources of interest has periodic symbols. For each source, it

then builds a three-way tensor with dimensions space, sym-

bol period, and temporal pattern from measurement data that

is recorded with M sensors over a certain time interval. To

this end, for the n-th source, Ln symbol periods composed

of Tn time samples are identified from the measurements,

yielding a data matrix of size M × Tn for each symbol pe-

riod. By stacking these matrices along the second dimension

of a three-dimensional array, one obtains the tensor Y (n) ∈
C
M×Ln×Tn . In the ECG context, due to the quasi-periodic

nature of the ECG signal, one can firstly detect ECG R-peaks

to identify different beats (ECG symbols). Then the data of

the maternal ECG beats comprising a fixed number of time

EUSIPCO 2013 1569743651
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samples around each R-peak are stacked into the tensor Y (1).

The same procedure is repeated to build the fetus tensor Y (2)

based on the fetal R-peaks. These tensors Y (n) can then

be decomposed into the loading matrices A(n) ∈ C
M×Rn ,

S(n) ∈ C
Tn×Rn , and H(n) ∈ C

Ln×Rn , which provide es-

timates of the mixing matrix, the ECG beat amplitude, and

the ECG temporal pattern, using the Canonical Polyadic (CP)

decomposition according to the following criterion [10]:

min
{Â(n),Ŝ(n),Ĥ(n)}

∑
i,j,k

∥∥∥∥∥y(n)ijk −
Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

∥∥∥∥∥
2

F

, (1)

where y
(n)
ijk are the entries of Y (n) and Rn is the assumed

rank of the n-th source corresponding to the number of com-

ponents of the n-th ECG. As it has been shown in [9], if

Tn ≥ Rn and Ln ≥ Rn, then M = 2 sensors are enough to

blindly separate Rn components. We are interested in utiliz-

ing a minimal number of electrodes. Thereby, although ma-

ternal and fetal ECGs can be multidimensional signals, we

assume that only 2 electrodes are available. In this case, a

direct algorithm that is based on eigenvalue decompositions

[11] can be used to compute the CP decomposition.

However, using the classic optimisation criterion (1) to

determine the dominant components of the fECG tensor, one

fails to find fetal components. Since in the mixture of ma-

ternal and fetal ECGs, the mECG signal is much more pow-

erful, it prevents the algorithms to concentrate on the signal

of interest, fECG, which has much lower power. In order to

overcome this problem, we considered two different solutions

that will be presented in the following.

The first idea consists in using a weighted CP decompo-

sition (WCP) for the fECG tensor, that applies a weight on

each entry of the tensor to better concentrate on the signal of

interest. Therefore, the new criterion is:

min
{Â(n),Ŝ(n),Ĥ(n)}

∑
i,j,k

∥∥∥∥∥w(n)
ijk

(
y
(n)
ijk −

Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

)∥∥∥∥∥
2

F

,

(2)

where

w
(n)
ijk = exp

{
− (y

(n)
ijk − μik)

2

σ2
ik

}
, n = 1, . . . , N (3)

are the elements of a nonnegative weight tensor, which is of

the same size as Y (n). Here, μik is the mean of Y (n) over

the j-th dimension and σik is the median absolute deviation

(MAD) estimator of Y (n) over the j-th dimension. Practi-

cally, it gives very small weights to values far from the mean,

i.e. especially outliers. This method is especially adapted

to the application at hand because it exploits the structure of

the data to compute weights that discriminate values of the

mECG signal in the fECG tensor.

A second, more general solution, that might also be of

interest for other applications, consists in considering a dif-

ferent cost function that does not attribute high errors to the

values of the mECG signal, which can be regarded as outliers.

To this end, we propose to employ a criterion that is based on

a Gaussian-shaped cost function and that is defined as:

min
{Â(n),Ŝ(n),Ĥ(n)}

∑
i,j,k

ψ

(
y
(n)
ijk −

Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

)
(4)

with ψ(u) = 1 − exp{− u2

2σ2 }. The resulting decomposition

is referred to as Gaussian CP (GCP) decomposition in the fol-

lowing. In this case, an error value of about u = 3σ between a

tensor element and the reconstructed tensor element is treated

as an outlier and its effective error value ψ(u) is limited to ap-

proximately 1. The parameter σ that adjusts the width of the

Gaussian function thus permits to define a threshold between

“normal” errors and outliers. The optimal value for σ should

thus be chosen according to the data. If available, an estimate

of the variance of the data can be used to this end. The crite-

rion (4) can be optimised using a gradient descent algorithm.

One may apply one of the above-mentioned methods,

which are called WCP and GCP in this paper, to directly

estimate fetal ECG as a multidimensional extension of [7].

However, in this case the main drawback is that the ECG dy-

namics are lost, because all ECG beats have exactly the same

temporal pattern, which is stored in H, up to their amplitudes

that are stored in S. In order to estimate more realistic ECGs,

a realistic ECG model within a Kalman filtering framework

is extended to extract fetal ECG.

2.2. EKF Framework for ECG Extraction

In [12], Bayesian filters such as the Extended Kalman Filter

(EKF) and Extended Kalman Smoother (EKS) have been

proposed for single-channel ECG denoising. The state-

space model used in these filters suggests to approximate

the PQRST waves by the sum of 5 Gaussian-shaped func-

tions to model realistic synthetic ECGs. This state-space

model was then further developed in [13]. In this study, we

adopt the developed state-space model and extend it for ex-

traction of several ECGs from multichannel recordings. The

model of one ECG signal, in its discrete form with a small

sampling period δ, is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θk+1 = (θk + ωδ)mod(2π)

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
Δθi,kexp(−Δθ2i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi

k

bi,k+1 = bi,k + ηbik
ψi,k+1 = ψi,k + ηψi

k

(5)

where θ, z, αi, bi, and ψi are the state variables in polar

coordinates and k denotes the discrete time index. W =
{P,Q,R, S, T} is the set of the PQRST waves. The αi and
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bi correspond to the peak amplitude and width parameters of

the Gaussian functions used for modeling each of the ECG

waves. Δθi,k = (θk −ψi)mod(2π), in which ψi corresponds

to the phase of the maximum of the ith Gaussian function. ω
is the phase increment and ηk, ηαi

k , ηbik , and ηψi

k are random

additive noises. The state vector associated with this ECG sig-

nal is thus defined by its phase θk, amplitude zk and Gaussian

function parameters αi, bi, and ψi. In addition to the noisy

ECG recording, sk, an observed phase, φk, is obtained by a

linear time wraping of the R-R intervals into [0, 2π), leading

to the following system:

[
φk
sk

]
=

(
1 0
0 1

)[
θk
zk

]
+

[
uk
vk

]
, (6)

where uk and vk are the corresponding observation noises

with zero-mean random variable entries.

With multichannel recordings, representational redun-

dancy of each ECG (fetal or maternal) can be exploited to

estimate the information of the desired ECG mixed with the

other ECGs and background noise. In order to do so, a linear

transform is assumed to decompose M mixed ECG signals

into N components. In other words, we assume that mater-

nal and fetal ECGs have N components in total, which are

demonstrated in M signals. For N mixed ECG components,

the dynamic equations may be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = − ∑

i∈W(1)

δ
α
(1)
i,kω

(1)

b
(1)2

i,k

Δθ
(1)
i,k exp

(
− Δθ

(1)2

i,k

2b
(1)2

i,k

)
+ z

(1)
k + ηz

(1)

k

α
(1)
i,k+1 = α

(1)
i,k + η

α
(1)
i

k

b
(1)
i,k+1 = b

(1)
i,k + η

b
(1)
i

k

ψ
(1)
i,k+1 = ψ

(1)
i,k + η

ψ
(1)
i

k
...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = − ∑

i∈W(N)

δ
α
(N)
i,k ω

(N)

b
(N)2

i,k

Δθ
(N)
i,k exp

(
− Δθ

(N)2

i,k

2b
(N)2

i,k

)
+ z

(N)
k + ηz

(N)

k

α
(N)
i,k+1 = α

(N)
i,k + η

α
(N)
i

k

b
(N)
i,k+1 = b

(N)
i,k + η

b
(N)
i

k

ψ
(N)
i,k+1 = ψ

(N)
i,k + η

ψ
(N)
i

k

(7)

The phase observations ofN ECG components, φ(1),...,φ(N),

andM noisy mixtures of theN ECG components, s(1),...,s(M),

are related to the state vector at time k as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(1)
k

φ
(2)
k
...

φ
(N)
k

s
(1)
k

s
(2)
k
...

s
(M)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . . 0 0 . . . 0

0 0 . . . 1 0 . . . 0
0 0 . . . 0 a11 . . . a1N
...

...
. . .

...
...

. . .
...

0 0 . . . 0 aM1 . . . aMN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ
(1)
k

θ
(2)
k
...

θ
(N)
k

z
(1)
k

z
(2)
k
...

z
(N)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[
u
(1)
k , u

(2)
k , . . . , u

(N)
k , v

(1)
k , v

(2)
k , . . . , v

(M)
k

]T
(8)

where u
(1)
k ,...,u

(N)
k and v

(1)
k , ..., v

(M)
k are the corresponding

observation noises. The key step prior to the implementation

of the filter is the estimation of the set of state parameters for

the n-th ECG component {α(n)
i , b

(n)
i , ψ

(n)
i , ω(n)}i∈W as well

as the mixing matrix A:

A =

⎡
⎢⎣
a11 . . . a1N

...
. . .

...

aM1 . . . aMN

⎤
⎥⎦ . (9)

In order to do so, the loading matrices provided by the pre-

vious step (Section 2.1) are used: the mixing matrix is di-

rectly defined as the concatenation of the loading matrices

A(n) related to all the ECG components; the state parameters

{α(n)
i , b

(n)
i , ψ

(n)
i , ω(n)}i∈W are obtained by fitting, for each

n, the sum of the Gaussian functions (i∈W) with the loading

matrix H(n); and the variability of the n-th ECG component

is estimated using the third loading matrix S(n), which can be

used as the state noises.

3. RESULTS

The results of the proposed method on two sets of actual data

have been presented and compared with the results of πCA

and FastICA methods. The WCP, GCP, EKSWCP and EKS-

GCP labels denote results of the first and second proposed

approaches for tensor decomposition without and with the

Kalman filtering stage, respectively.

3.1. DaISy Dataset

The DaISy fetal ECG database [14] consists of a single

dataset of cutaneous potential recording of a pregnant woman.

A total of 8 channels (5 abdominal and 3 thoracic) are avail-

able, sampled at 250 Hz and lasting 10 seconds.

Fig.1 shows the results of fECG extraction using only the first

and second channels of this dataset. The mECG and fECG

tensors are of sizes 2 × 12 × 184 and 2 × 22 × 113 and the

3
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Fig. 1. mECG and fECG extraction by FastICA, πCA, GCP

and EKSGCP on the first and second channels of DaISy data.

Table 1. Maternal and fetal R-peak values on fECG estimate

of DaISY dataset (mean + standard deviation (SD)).
Maternal Fetal

R-peak value R-peak value

Original mixture 43.66±2.38 17.68±2.37

FastICA 31.30±2.29 13.09±1.91

πCA 41.39±2.68 19.21±2.17

WCPD -0.88±0.83 16.65±1.26

GCF -0.90±0.91 16.04±2.72

EKSWCP 0.29±1.40 17.54±0.99

EKSGCP 0.17±1.46 16.19±1.11

chosen values for mECG and fECG ranks are equal to 2 and

1, respectively. πCA and FastICA methods demand several

channels to recover the weak pattern of fECG, so as it is seen,

if only two electrodes are available, they fail to extract fECG,

whereas GCP and EKSGCP do not. There is neither ground

truth nor golden standard on actual fetal ECG recordings

to be used as the reference for comparing the performance

of the different methods. Nevertheless, in order to quantize

the performance of each method on actual data, the mean

values of the contaminating and desired ECGs have been

measured at their R-peak positions in the estimated ECG.

This can provide an estimate of residual of the contaminating

mECG in the estimated fECG. If the contaminating mECG

has been successfully canceled, the values of this measure

should be low, meanwhile, the values of the estimated fECG

−200
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Recorded signal (channel 92)

−200
0

200
πCA maternal estimation

−200
0

200
WCP maternal estimation

−200
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200
EKSWCP maternal estimation
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0
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Time [s]

Fig. 2. Maternal and fetal MCG extraction by πCA, WCP and

EKSWCP on the 92th and 116th channels of twin MCG data.

Table 2. Maternal and fetal R-peak values on the first fetal

MCG estimate of twin MCG dataset (mean + SD).
Maternal First fetal Second fetal

R-peak value R-peak value R-peak value

Original

mixture 210.08±31.42 66.04±40.74 74.97±29.27

πCA 159.72±25.79 63.15±36.77 21.28±24.39

WCPD -3.44±10.86 55.85±13.98 -2.57±8.37

GCF -3.74±7.00 46.79±29.92 -3.08±9.55

EKSWCP 1.39±6.77 71.22±28.12 0.20±6.75

EKSGCP 1.94±8.10 65.48±33.29 1.06±8.85

at its R-peak positions should be close to values of the corre-

sponding points in the original mixture. Table 1 shows values

of this measure on the fECG estimated by the different meth-

ods. Although GCP (or WCP) and EKSGCP (or EKSWCP)

provided close quantitative results, it should be noted that

valuable inter-beat dynamics of mECG and fECG are lost in

the GCP (or WCP) estimate, because as it was explained in

the previous section all beats of the reconstructed ECGs have

exactly the same temporal pattern up to their amplitudes.

3.2. Twin MCG Dataset

Due to the morphological similarity of the ECG and the

magnetocardiogram (MCG), the proposed method is also di-

rectly applicable to MCG recordings. Since the built tensor

is weighted according to the signal of interest, as long as two

4
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sources are not exactly synchronous, they can be separated

even if their symbol rates are the same. This enables the

method to separate twin cardiac signals even if heart rates are

approximately equal. This discrimination is also provided by

the Gaussian function in the second approach. The dataset

used in this subsection consists of three sets of twin MCGs

and other signals, in arrays of 208 channels recorded over 30

minutes, with a sampling rate of 1025 Hz 1. The presented

results have been achieved on a typical couple of channels

(indexed 92 and 116) of namely the q00002252 dataset.

One maternal MCG and two fetal MCGs, there are three

sources to be extracted, while two channels are to be utilized.

FastICA and πCA methods are not applicable to underdeter-

mined mixtures. Nevertheless, since in the πCA algorithms,

the signal of interest is already selected, it is possible to apply

πCA algorithms three times so that each time the covariance

matrix is made according to the desired source. This way, all

three MCGs can be estimated. The mECG and fECG ranks

considered in the proposed method are 2 and 1, respectively.

The three tensors are constructed with parameters L1 = 15,

T1 = 619, L2 = 22, T2 = 440, L3 = 23, and T3 = 408. To

suppress the large amount of noise that is present in the data,

we also used the WCP decomposition for the mECG tensor.

Fig.2 presents the results of πCA, WCP and EKSWCP in ex-

traction of the maternal and two fetal MCG signals from two

sensors. Here again, πCA method fails to track periodic pat-

terns related to the fetal components due to their low power

and insufficient number of the utilized electrodes. Neverthe-

less, WCP and EKSWCP could recover weak traces of fetal

MCG features. The maternal and fetal R-peak values on the

first fetal MCG estimate, are presented in Table 2.

4. CONCLUSIONS

The number of utilized channels is a key feature of a monitor-

ing system that can affect the system’s price, convenience and

portability. Classical multichannel methods for fECG extrac-

tion need several sensors to recover the weak fECG signal.

In order to utilize a minimal number of electrodes, two ro-

bust criteria for deterministic tensor decomposition have been

employed to better track weak traces of fECG, then a non-

linear Bayesian filtering framework has been extended and

used to improve the fECG and mECG estimates. The pro-

posed method, which needs only two sensors to successfully

recover several components of ECG signals performs signif-

icantly better than more classical methods. Perspectives in-

clude deep comparison between tensor decomposition meth-

ods and application of the proposed method on other datasets.

1This dataset has been provided by Dr. Dirk Hoyer, from the Biomag-

netic Center of the Department of Neurology, in Friedrich Schiller University,

Jena, Germany.
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