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ABSTRACT

Low-rank representations of multivariate signals are useful in
a wide variety of applications such as data compression, fea-
ture extraction and noise filtering. Several matrix decompo-
sition techniques like principal component analysis and inde-
pendent component analysis have been proposed so far for
reduced-rank signal representation. However, these methods
have no effect on the error dispersion across observations,
which may lead to poor representation of some input vari-
ables. To render a more uniform description of the observed
data, this work puts forth a novel technique for reduced error
dispersion (RED) based on a p-norm minimization criterion,
with p > 1. The RED criterion is minimized by an itera-
tive algorithm alternating between a gradient descent update
and a least squares (LS) step via singular value decomposi-
tion. Links with existing weighted LS approaches are also
established. A simulation study demonstrates the satisfactory
convergence of the proposed algorithm and its ability to ap-
proximate the observed data with improved reconstruction er-
ror uniformity at a negligible impact on the average error.

Index Terms— Matrix approximations, principal com-
ponent analysis (PCA), reduced error dispersion (RED),
weighted least squares (WLS).

1. INTRODUCTION

Approximating a matrix by another with lower rank is a fun-
damental problem in matrix algebra and signal processing,
finding application in a variety of fields such as data compres-
sion, feature extraction and noise removal. A key aspect of
most real-world phenomena is their multivariate nature, and
modern measurement systems are indeed able to acquire an
increasingly high number of data variables. Typical examples
are biomedical signal acquisition schemes such as the ECG
and the EEG that record the physiological phenomena of in-
terest (electrical activity from the heart and the brain, respec-
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a doctoral grant from the French Ministry of Higher Education and Research,
and also partly supported by the DreamIT Foundation in partnership with the
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tively) using simultaneous multiple leads. Focusing on a sin-
gle variable or lead separately while neglecting the others and
their relationships often leads to wrong model interpretation
and poor signal reconstruction. This calls for the development
of multivariate decomposition techniques that, through suit-
able constraints, are able to render a faithful representation of
the input signal with reduced dimensionality while preserv-
ing its most meaningful features. In ECG data compression,
for instance, one may require not only the average reconstruc-
tion error to be small, but also the reconstruction quality to be
evenly distributed across leads.

Principal component analysis (PCA) is arguably the most
popular low-rank signal approximation technique [1]. It de-
composes the data matrix as a sum of rank-1 components re-
taining most of the input variance and minimizing the average
reconstruction error in the least square (LS) sense. Despite
its usefulness in data analysis, PCA has no control on signal
dispersion among input variables, so that reconstruction accu-
racy can be hampered by these scattering effects. This draw-
back is shared by recent variants. Robustness to outliers can
be improved through alternative error measures such as the
1-norm and correntropy [2, 3]. Also based on the 1-norm and
related constraints, sparse PCA [4] tries to simplify the inter-
pretation of principal components by reducing the number of
non-zero loadings. Another line of work has kept exploring
the benefits of the classical 2-norm; for instance, minimizing
the uniform error, defined as the maximum error 2-norm over
the data samples, leads to cost-effective visual tracking algo-
rithms with remarkable performance [5]. Yet, as for classical
PCA, none of these variants is designed to guarantee a recon-
struction error more evenly spread over the input variables.
Similar limitations are encountered by independent compo-
nent analysis (ICA) [6, 7], since independence constraints
do not take into account the reconstruction error distribution
across inputs.

To bridge this gap, the present investigation puts forward a
novel criterion for achieving reduced error dispersion (RED)
of low-rank matrix approximations. By means of a p-norm
cost with p > 1, this criterion aims not only at minimizing the
mean reconstruction error as in PCA, but also its dispersion
among input variables. This cost function can be efficiently
optimized by a gradient-descent iteration followed by orthog-
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onal projection on the space of low-rank matrices via singu-
lar value decomposition (SVD). Interestingly, the RED ap-
proach can be interpreted as a special instance of the weighted
PCA technique of [8, 9, 10] with non-constant weights, which
are effectively handled by the proposed optimization algo-
rithm. After presenting the new method, its performance is
assessed by numerical experiments, showing its good conver-
gence properties and its ability to fit the input matrix with
improved reconstruction error uniformity.

2. LOW-RANK MATRIX APPROXIMATIONS

2.1. Problem formulation

Let us consider a multivariate signal represented by L vari-
ables observed over N samples, denoted xij , i = 1, 2, . . . , L,
j = 1, 2, . . . , N , where typically N > L. For simplicity in
the mathematical derivations that follow, the observed data
are assumed to be real valued, although extensions to the
complex case are possible with minor modifications. The ob-
served samples are often arranged in the form of a data matrix
X ∈ RL×N with entries [X]ij

def
= xij . Low-rank represen-

tations aim at fitting the data matrix by the rank-R bilinear
model

X̂ = HST (1)

where H ∈ RL×R and S ∈ RN×R, with R < L; sym-
bol (·)T denotes the transpose operator. Clearly, this model
is invariant to post-multiplication of its factors by an non-
singular matrix A ∈ RR×R and its inverse transpose, since
(HA)(SA−T )T = HST , so that additional constraints are
necessary to reduce this ambiguity. For instance, PCA as-
sumes model factors H and S with orthogonal columns,
whereas ICA imposes statistical independence between the
R random variables whose realizations are defined along the
columns of S.

If the interest lies in the reconstruction accuracy, model (1)
is estimated by minimizing a given function of the residuals
subject to the assumed constraints. Such a function is often
related to the mean square error (MSE) in the estimation of
the input variables, defined as

εi
def
=

1

N

N∑
j=1

(xij − x̂ij)2 i = 1, 2, . . . , L. (2)

The reconstruction errors for all input variables can be stored
in a vector εεε def

= [ε1, ε2, . . . , εL]T .

2.2. Principal component analysis

The low-rank estimate provided by PCA consists in the min-
imization of the residual MSE averaged over the input vari-
ables:

ΨPCA = ε =
1

L

L∑
i=1

εi =
1

L
‖εεε‖1 (3)

where the second equality is due to the positivity of εi, im-
plying εi = |εi|, i = 1, 2, . . . , L, Combining eqns. (1)–(3),
the minimization of ΨPCA can be formulated as the ordinary
least squares (LS) fitting problem:

arg min
H,S
‖X−HST ‖2Fro (4)

where ‖·‖Fro represents the Frobenius norm. The minimizers
of this function with respect to H and S while keeping the
other factor constant are easily deduced as:

Hopt = XS(STS)−1 Sopt = XTH(HTH)−1. (5)

Iterating between these two equations leads to an alternating
LS (ALS) algorithm for the computation of the optimal fac-
tors of the PCA model. However, subject to the orthogonality
constraints on the model factors, the above equations admit
well-known closed-form solutions for H and S in terms of
theR dominant eigenvectors of matrices XXT and XTX, re-
spectively. An alternative equivalent solution exists in terms
of the SVD of the data matrix, by retaining the singular vec-
tors associated with the R largest singular values of X [1].

2.3. Reduced error dispersion

Since PCA merely focuses on the average reconstruction
MSE, it lacks control over the actual distribution of the error
across different variables. As a result, some input variables
may be better approximated than others, which may be un-
desirable in some applications. This observation is further
supported by the use of the 1-norm in eqn. (3), presenting
certain tendency to make the error distribution sparse. To
surmount this shortcoming, one could think of including in
the PCA cost (3) a penalty term based on the error standard
deviation, defined as

σε =

√√√√ 1

L

L∑
i=1

ε2i − ε2 (6)

giving rise to Ψ
(2)
RED

def
= (ε2 + σ2

ε) = 1
L

∑L
i=1 ε

2
i = ‖εεε‖22/L.

Clearly, this combined cost takes into account both the aver-
age error and the error dispersion. The natural extension of
this idea leads to the following criterion based on the p-norm
of the fitting error:

Ψ
(p)
RED

def
=

1

L
‖εεε‖pp =

1

L

L∑
i=1

εpi (7)

with p > 1. We refer to this function as reduced error dis-
persion (RED) criterion. Note that if p = 1, cost (7) remains
valid, but reduces to standard PCA (3) and loses explicit con-
trol on error disperson. For convenience, the shorthand nota-
tion Ψ will be used for Ψ

(p)
RED in the sequel, where the value

of p will generally be clear from the context.
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2.4. Alternating least squares solution

If X is full rank, the stationary points of the RED criterion (7)
with respect to H and S are given by:

Hopt = XS(STS)−1 Sopt = XTEpH(HTEpH)−1

(8)
where

Ep
def
= Diag([εp−1

1 , εp−1
2 , . . . , εp−1

L ]). (9)

Since Ep depends on H and S through eqns. (1)–(2), the
above expression for Sopt actually defines a set of (L × R)
polynomial equations of degree (2p − 1) in the entries of S.
Except for p = 1 (PCA), these equations are coupled and
nonlinear, which prevents the explicit expression of factor S
as a function of H and X only. As a result, the ALS algo-
rithm defined by (8) shows poor convergence for p > 1, as
confirmed by our preliminary experiments, and we are left to
consider alternative solutions.

2.5. Iterative optimization: gradient descent

The iterative procedure proposed in this work consists of per-
forming unconstrained gradient descent of the cost (7) with
respect to the approximation X̂. This is followed by an addi-
tional step enforcing the required rank-R model structure, as
will be detailed in the following section. Differentiating (7)
with respect to x̂ij results in the gradient matrix:

∇Ψ(X̂) = − 2p

LN
Ep(X− X̂)

where matrix Ep is defined in eqn. (9). The gradient-descent
update is then given by

X̂+
k = X̂k − µ∇Ψ(X̂k) (10)

for a suitable step-size parameter µ. To choose an appropriate
step-size value, we assume that criterion (7) can be perfectly
cancelled and the current estimate X̂k is close to the optimal
solution. The first-order Taylor approximation of Ψ around
X̂k reads:

Ψ(X̂+
k ) ≈ Ψ(X̂k) + trace

(
∇Ψ(X̂k)T (X̂+

k − X̂k)
)
.

Plugging in update (10), we have

Ψ(X̂+
k ) ≈ Ψ(X̂k)− µ‖∇Ψ(X̂k)‖2Fro

which, by nulling the left-hand side of the expression, leads
to

µ = Ψ(X̂k)/‖∇Ψ(X̂k)‖2Fro.

This yields the gradient-descent update with adaptive step
size:

X̂+
k = X̂k −

Ψ(X̂k)∇Ψ(X̂k)

‖∇Ψ(X̂k)‖2Fro
. (11)

2.6. Enforcing the low-rank structure

The above gradient iteration is not consistent with the rank-R
structure assumed for the fitted model X̂ in (1). To enforce
this structure, update X̂+

k in (11) is projected on the space
of rank-R matrices with dimensions (L × N) . This can be
achieved by solving the LS problem (4) using X̂+

k instead of
the original data matrix X. As a result, the final update, de-
noted X̂k+1, is obtained by truncating the R dominant terms
of the SVD of X̂+

k [11].
To recap, an iteration of the proposed algorithm consists

of gradient-descent iteration (11) followed by the truncated
SVD to ensure the rank-R structure. This two-step iteration is
repeated until convergence. As a stopping criterion, we check
if the relative distance between successive iterates or between
their cost values lie below a certain threshold η, i.e.,

‖X̂k+1 − X̂k‖Fro
‖X̂k‖Fro

< η or
|Ψ(X̂k+1)−Ψ(X̂k)|

Ψ(X̂k)
< η.

(12)
After convergence, the columns of factor H in model (1) can
be obtained as the R dominant left singular vectors of X̂+

k+1

scaled by the corresponding singular values, whereas S is
made up of the associated right singular vectors.

2.7. Links with weighted LS solutions

Weighted LS (WLS) problems aim at finding

arg min
H,S
‖W � (X−HST )‖2Fro (13)

where W ∈ RL×N is a matrix of positive weights and �
stands for the Hadamard (element-wise) product [8]. Devel-
oping eqn. (13) and comparing it with eqns. (1), (2) and (7),
the RED criterion can be considered as a particular WLS ob-
jective with weights

w2
ij = εp−1

i (14)

for i = 1, 2, . . . , L, and j = 1, 2, . . . , N . According to this
connection, an ALS procedure — referred to as criss-cross
multiple regressions in [8] — could be employed for min-
imizing the RED cost, and indeed it particularizes to (8).
However, whereas the weights of the original WLS criterion
are set to constant values before starting the iterations, RED
weights (14) depend on the fitting error for the current values
of the model factors [through eqns. (1)–(2)], and thus vary
with successive iterations, making the ALS iteration subopti-
mal. This may help explain the bad performance of the ALS
algorithm observed at the end of Sec. 2.4. On the other hand,
the two-step algorithm put forward in Secs. 2.5–2.6 bears
strong resemblance with the majorizing function approach
of [9, 10] for WLS optimization, but is actually derived from
a gradient-descent iteration and handles the non-constant
weights in a natural fashion. This algorithm has yielded
satisfactory convergence in all our experiments, which are
reported next.
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3. EXPERIMENTAL RESULTS

3.1. Experimental set-up

Some numerical experiments are carried out to assess the per-
formance of the RED criterion of Sec. 2.3 optimized by the
iterative algorithm of Secs. 2.5–2.6. Results for different val-
ues of p > 1 are compared with those for p = 1, correspond-
ing to classical PCA. More recent variants such as [2, 3, 4, 5]
are not considered in this experimental study since, by de-
sign, these methods are not more likely to yield solutions with
improved error dispersion than PCA, as discussed in the In-
troduction. At each Monte Carlo iteration, a full-rank data
matrix X is generated as the product of two random matrices
with dimensions (L×L) and (L×N) made up of zero-mean
unit-variance Gaussian entries, withN = 1000. Arbitrary lin-
ear relationships between the rows of X, linked to the cross-
correlations of the underlying variables, are simulated in this
way. The PCA solution is used as the initial point X̂0 for the
RED iterations. The threshold parameter is set to η = 10−6

in stopping test (12). After convergence of the algorithm, sev-
eral performance indices are computed. Besides the average
error ε defining the PCA criterion (3), the standard deviation
of the fitting error, σε [eqn. (6)], is also computed to assess the
degree of dispersion over input variables. As seen in Sec. 2.3,
this index is related to the RED cost for p = 2. To quantify
the degree of dispersion independently of the RED cost, we
consider the error across inputs as a random distribution with
discrete probabilities εi/

∑L
i=1 εi, and compute its Kullback-

Leibler divergence from the discrete uniform distribution:

DKL = − 1

L

L∑
i=1

log
(εi
ε

)
.

This index cancels out if and only if all reconstruction er-
rors are identical, and is strictly positive otherwise. All per-
formance indices are averaged over 100 independent Monte
Carlo runs.

3.2. Influence of observation dimensions

The first set of experiments evaluates the influence of the sig-
nal subspace dimension L on RED’s performance for several
values of p, assuming rank-1 approximations (R = 1). The
results are graphically summarized in Fig. 1. The error statis-
tics worsen with increasing dimensions, as a model with fixed
degrees of freedom is fitted to larger signal subspaces. How-
ever, error dispersion improves as p increases, especially for
low data dimensions L, where reductions of up to 10 dB in
error standard deviation can be observed (top plot of Fig. 1).
The trends in error uniformity as described byDKL are analo-
gous (bottom plot). More remarkably, these favorable effects
are obtained at a negligible impact on the average error (top
plot). Although not shown here due to space limitations, the
number of iterations for convergence increases slightly with p
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Fig. 1. RED criterion performance against observation di-
mensions, with N = 1000 samples and approximation rank
R = 1. (Top) Reconstruction error statistics. (Bottom)
Kullback-Leibler divergence from uniform error distribution.

and L, but the algorithm required at most 250 iterations over
the range of values considered for these parameters in this ex-
periment.

3.3. Influence of model rank

The experiment is repeated by keeping L = 5 dimensions
and fitting a model with increasing rank R from 1 to 4. The
results, plotted in Fig. 2, confirm the reduced error disper-
sion obtained by RED with p > 1 as compared with PCA,
while leaving the average error essentially unaffected (top
plot). This time the error dispersion in terms of standard devi-
ation improves with R, as the increasing degrees of freedom
allow a more accurate model fitting in a signal subspace with
constant dimensions. Nevertheless, only the RED criterion
with sufficient p is able to enhance error uniformity as mea-

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

sured by the cost-independent index DKL (bottom plot). The
number of iterations (again not shown here for lack of space)
increase with p but decrease slightly with R. For all values of
p and R examined in this simulation, the algorithm required
no more than 200 iterations for convergence.

4. CONCLUSIONS

The present work has put forward a novel technique for com-
puting lower-rank representations of multivariate signals. By
means of a p-norm criterion, the proposed method yields a
low-rank approximation of the input data matrix minimizing
not only the average MSE but also its dispersion among vari-
ables. Such features allow a more uniform representation of
input observations, as well as the compensation of irregular-
ity effects in the computed approximation. Although the cri-
terion is linked to WLS optimization, special adjustments are
required to take into account the varying nature of the weights
implicitly used in the RED cost. The numerical analysis con-
firms the good convergence of the proposed iterative algo-
rithm for RED criterion minimization. On synthetic data, the
low-rank RED fitting is indeed characterized by a higher de-
gree of error uniformity among input variables than PCA and
is able to maintain the average error at practically the same
level as the classical decomposition technique. Further work
is required to confirm the compression efficacy of the RED
approximation on real data and the possibility to exploit its
capabilities in actual applications requiring data dimensional-
ity reduction and feature extraction. Extensions to multi-way
array (tensor) decompositions are also worth exploring.
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